Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6061
DC FieldValueLanguage
dc.contributor.authorallVetere, F.; Università della Calabriaen
dc.contributor.authorallBehrens, H.; Leibniz Universitat Hannoveren
dc.contributor.authorallHoltz, F.; Leibniz Universitat Hannoveren
dc.contributor.authorallVilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-06-30T07:37:26Zen
dc.date.available2010-06-30T07:37:26Zen
dc.date.issued2010-06en
dc.identifier.urihttp://hdl.handle.net/2122/6061en
dc.description.abstractNew experiments on the viscosity of partially crystallized andesite were performed high temperature using the falling sphere methods. Because experiments with partly crystallized samples are difficult to carry out (i.e. due to high sensitivity of phase equilibria to P,T and water content), we set up a new technique to control precisely the volume fraction and the size of crystals. We simply add zircon to the melt because: a) previous study suggested that the saturation of zircon in melts of andesitic composition as a function of both temperature and composition is low, and b) easy to crush in fixed size range. Zircon-bearing magmas were synthesized at 1473 K and 300 MPa using an internally heated gas pressure vessel. All the experimental samples were then analyzed using microprobe technique. Results gave an average value of ZrO2 dissolved in the melt of about 1.6 wt %. The solubility of Zr in andesitic melt is up to two-three times higher than predicted by literature model (Watson and Harrison, 1983). Falling sphere experiments were performed using as starting material composed of dry andesitic glass, zircon crystals (15, 30 and 40 vol%) and water. The water content of the andesitic melt after experiments ranged between 0.5 and 4.08 wt%. Image analyses show that the viscosity measurements are not affected by differences in crystals shape among the samples. Falling spheres results show a viscosity 10 times higher than that of andesitic melts for samples containing 15 vol% crystals and large discrepancies from previous literature models is found in the hydrous samples. At higher vol% of crystals we did not observe any movement of the sphere. This implies that such magmas show strongly Non-Newtonian viscosity, i.e. a threshold of accelerating force needs to be passed before the sphere could move.en
dc.language.isoEnglishen
dc.publisher.nameJapan Association of Mineralogical Sciencesen
dc.relation.ispartofJournal of Mineralogical and Petrological Sciencesen
dc.relation.ispartofseries3/105 (2010)en
dc.subjectViscosityen
dc.subjectSolubilityen
dc.subjectMagmaen
dc.subjectCrystal-bearing andesiteen
dc.subjectFalling sphere methoden
dc.titleViscosity of crystal-bearing melts and its implication for magma ascenten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber151-163en
dc.identifier.URLhttp://www.jstage.jst.go.jp/article/jmps/105/3/151/_pdfen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.2465/jmps.090402en
dc.relation.referencesArbaret, L., Bystrycky, M., Champallier, R., 2007. Microstructures and rheology of hydrous synthetic magmatic suspensions deformed in torsion at high pressure. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B10208, doi:10.1029/2006JB004856, 2007 Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M., Papale, P. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics Earth and Planetary Science Letters 264 (2007) 402–419 Chen, H.C., De Paolo, D.J., Nakada, S. and Shieh, Y.M., 1993. Relationship between eruption volume and neodymic isotopic composition at Unzen volcano. Nature, 362: 831-834. Costa, A., 2005. Viscosity of high crystal content melts: Dependence on solid raction. GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L22308, doi:10.1029/2005GL024303, 2005 Cox M.R., Budhu B. (2008) A practical approach to grain shape quantification Engineering Geology 96, 1–16 Dellino, P., and La Volpe, L., 1996. P. Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato–Rocche Rosse eruptions, Lipari (Aeolian islands, Italy). J. Volcanol. Geotherm. Res. 71, pp. 13–29. Einstein, A., 1911. Eine neue Bestimmung der molekuldimensionen. Annals of Physics, 19, 289-306. Faxen, H., 1923. Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Ark. Math., Astro Fysik, 17, 1-28 (in German). Getson, J.M., and Whittington, A.G., 2007. Liquid and magma viscosity in the anorthite-forsterite-diopside-quartz system and implications for the viscosity-temperature paths of cooling magmas, Journal of Geophysical Research, 112, B10203, doi:10.1029/2006JB004812. Huy, H., and Zhang, Y., 2007. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochimica et Cosmochimica Acta 71, 403-416. Kerr, R.C. & Lister, J.R. 199 The effects of shape on crystal settling and on the rheology of magmas. Geology 99, 457—467. Ishibashi, H., and Sato, H., 2006. Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan. Journal of Volcanology and Geothermal Research 160 (2007) 223–238 Marsh, B.D., 1981. On the crystallinity, probably occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology, 78: 85-98. Lejeune, A.M., Richet, P., 1995. Rheology of crystal-bearing silicate melts - an experimental study at high viscosities. Journal of Geophysical Research: Solid Earth 100, 4215-4229. Lister, J.R., and Kerr, R.C., 1991. Fluid-Mchanical models of crack propagation and their application to magma transport an dyke. Journal of Geophysical Research 96, 10049-10077. Loncaric S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31, 8, 983-1001. Marsh, B.D., 1981. On the crystallinity, probably occurrence, and rheology of lava and magma. Contributions to Mineralogy and Petrology 78, 85-98. Pinkerton, H., and Stevenson, R.J., 1992. Methods of determining the rheological properties of magmas at suliquidus temperature. Journal of Volcanology and Geothermal Research, 53: 47-66. Roscoe, R., 1952. The viscosity of suspensions of rigid spheres. British Journal of Applied Physics 3, 267–269. Russell, J.K., Girdano, D. and Dingwell D.B. 2003. High-temperature limits on viscosity of non-Arrhenian silicate melts. American Mineralogist 88, 1390-1394. Sato, H., 2005. Viscosity measurements of subliquidus magmas:1707 basalt of Fuji volcano. Journal Mineralogy and Petrology Science 100, 133-142. Sherman, P., 1968. Emulsion science. Academic press, Orlando, Fla., 351 pp. Simha, R.,1939. The nfluence of brownian movement on the viscosità of solutions. Presented at the Ninety-seventh Meeting of the American Chemical Society, held at Baltimore, Maryland, April, 1939. Shaw, H.R., 1963. Obsidian-H2O viscosities at 100 and 200 bars in temperature range 700 degrees to 900 degrees C. Journal of Geophysical Research 68 (23), 6337-6343. Shaw, H.R., 1972. Viscosities of magmatic silicate liquids - Empirical method of prediction. American Journal Science 272, 870-893. Vetere F. (2006). Viscous flow of magmas from Unzen volcano, Japan – implication for magma mixing and ascent. University of Hannover (DE) Vetere, F., Behrens, H., Schuessler J.A., Holtz F., Valeria Misiti , L. Borchers, 2008. Viscosity of andesite melts and its implication for magma mixing prior to Unzen 1991-1995 eruption. Journal of Volcanology and Geothermal Research, Unzen special issue, In Press. Watson, E.B., and Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effect in variety of crustal magma types. Earth and Planetary Science Letters, 64: 295-304.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorVetere, F.en
dc.contributor.authorBehrens, H.en
dc.contributor.authorHoltz, F.en
dc.contributor.authorVilardo, G.en
dc.contributor.authorVentura, G.en
dc.contributor.departmentUniversità della Calabriaen
dc.contributor.departmentLeibniz Universitat Hannoveren
dc.contributor.departmentLeibniz Universitat Hannoveren
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-7240-4467-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2010_Vetere_JMPS_Viscosity.pdf2 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

17
checked on Feb 10, 2021

Page view(s) 50

256
checked on Apr 24, 2024

Download(s)

27
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric