Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/6056
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | De Siena, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.authorall | Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.authorall | Bianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.authorall | Tramelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.date.accessioned | 2010-06-30T07:29:06Z | en |
dc.date.available | 2010-06-30T07:29:06Z | en |
dc.date.issued | 2009 | en |
dc.identifier.uri | http://hdl.handle.net/2122/6056 | en |
dc.description.abstract | A three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes.We used 6609 waveforms, relative to 826 volcano-tectonic earthquakes, located close to the crater axis in a depth range between 1 and 4 km (below the sea level), recorded at seven 3-component digital seismic stations. We adopted a two-point ray-tracing; rays were traced in an high resolution 3-D velocity model. The spatial resolution achieved in the attenuation tomography is comparable with that of the velocity tomography (we resolve 300m side cubic cells). We statistically tested that the results are almost independent from the radiation pattern. We also applied an improvement of the ordinary spectral-slope method to both P- and S-waves, assuming that the differences between the theoretical and the experimental high frequency spectral-slope are only due to the attenuation effects. Consequently we could check the codanormalization method also comparing the S attenuation image with the P attenuation image. The images were obtained inverting the spectral data with a multiple resolution approach. Results have shown the general coincidence of low attenuation with high velocity zones. The joint interpretation of velocity and attenuation images allows us to interpret the low attenuation zone intruding toward the surface until a depth of 500m below the sea level as related to the residual part of solidified magma from the last eruption. In the depth range between −700 and −2300 images are consistent with the presence of multiple acquifer layers. No evidence of magma patches greater than the minimum cell dimension (300m) has been found. A shallow P wave attenuation anomaly (beneath the southern flank of the volcano) is consitent with the presence of gas saturated rocks. The zone characterized by the maximum seismic energy release cohincides with a high attenuation and low velocity volume, interpreted as a cracked medium. | en |
dc.language.iso | English | en |
dc.publisher.name | Elsevier | en |
dc.relation.ispartof | Physics of the Earth and Planetary Interiors | en |
dc.relation.ispartofseries | /173 (2009) | en |
dc.subject | Attenuation tomography | en |
dc.subject | Mt. Vesuvius | en |
dc.subject | Coda normalization method | en |
dc.subject | Spectral slope | en |
dc.subject | Multi resolution inversion | en |
dc.title | Multiple resolution seismic attenuation imaging at Mt. Vesuvius | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.description.pagenumber | 17–32 | en |
dc.identifier.URL | http://hdl.handle.net/2122/4244 | en |
dc.subject.INGV | 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy | en |
dc.subject.INGV | 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology | en |
dc.subject.INGV | 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis | en |
dc.identifier.doi | 10.1016/j.pepi.2008.10.015 | en |
dc.relation.references | Andronico, D., Calderoni, G., Cioni, R., Sbrana, A., Suplizio, R., Santacroce, R., 1995. Geological map of Somma–Vesuvius Volcano. Per. Mineral. 64, 77–78. Aki, K., 1980. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Int. 21, 50–60. Auger, E., Gasparini, P., Virieux, J., Zollo, A., 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294, 1510–1512. Bai, C., Greenhalgh, S., 2005. 3D multi-step travel time tomography: imaging the local, deep velocity structure of Rabaul volcano, Papua New Guinea. Phys. Earth Planet. Int. 151, 259–275. Berrino, G., Coppa, U., De Natale, G., Pingue, F., 1993. Recent geophysical investigation at Somma–Vesuvius volcanic complex. J. Volcanol. Geotherm. Res. 58, 239– 262. Bianco, F., Castellano, M., Milano, G., Ventura, G., Vilardo, G., 1997. The Somma–Vesuvius stress field induced by regional tectonics: evidences from seismological and mesostructural data. J. Volcanol. Geotherm. Res. 82, 199– 218. Bianco, F., Castellano, M., Del Pezzo, E., Ibanez, J.M., 1999. Attenuation of short period seismic waves at Mt. Vesuvius, Italy. Geophys. J. Int. 138, 67–76. Block, L.V., 1991. Jointhypocenter-velocity inversion of local earthquakes arrival time data in two geothermal regions. Ph.D. dissertation, M.I.T., Cambridge. Capuano, P., Gasparini, P., Zollo, A., Virieux, J., Casale, R., Yeroyanni, M., 2003. The internal structure of Mt. Vesuvius. A seismic tomography investigation. Liguori Editore, ISBN: 88-207-3503-2. Chiodini, G., Marini, L., Russo, M., 2001. Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochem. Cosmochem. Acta 65 (13), 2129–2147. Chouet, B., 1996. New methods and future trends in seismological volcano monitoring. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, pp. 23–97. Chouet, B., 2003. Volcano Seismology. Pageoph 160, 739–788. Del Pezzo, E., Bianco, F., Saccorotti, G., 2004. Seismic source dynamics at Vesuvius volcano, Italy. J. Volcanol. Geotherm. Res. 133, 23–39. Del Pezzo, E., Bianco, F., Zaccarelli, L., 2006a. Separation of Qi and Qs from passive data at Mt. Vesuvius: a reappraisal of seismic attenuation. Phys. Earth Planet. Int. 159, 202–212. Del Pezzo, E., Bianco, F., De Siena, L., Zollo, A., 2006b. Small scale shallowattenuation structure at Mt. Vesuvius, Italy. Phys. Earth Planet. Int. 157, 257–268. De Natale, G., Capuano, P., Troise, C., Zollo, A., 1998. Seismicity at Somma–Vesuvius and its implications for the 3D tomography of the volcano. In: Spera, F.J., De Vivo B., Ayuso R.A., Belkin H.E. (Eds.) J. Volcanol. Geotherm. Res., Special Issue Vesuvius. 82, 175–197. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., 2005. The Somma–Vesuvius volcano (Southern Italy): Structure, dynamics and hazard evaluation. Earth Sci. Rev. 74, 73–111. Eberhart-Phillips, D., 1990. Three-dimensional P and S velocity structure in the Coalinga region, California. J. Geophys. Res. 95, 15343–15363. Eberhart-Phillips, D., Reyners, M., Chadwick, M., Chiu, J.M., 2005. Crustal heterogeneity and subduction processes: 3-D VP , VP / VS and Q in the southern North Island, New Zealand. Geophys. J. Int. 162, 270–288. Galluzzo, D., Del Pezzo, E., Maresca, R., La Rocca, M., Castellano, M., 2005. Site effects estimation and source-scaling dynamics for local earthquakes at Mt. Vesuvius, Italy. Congress acts, ESG2006, Grenoble. Paper Num. 36. Giampiccolo, E., Gresta, S., Ganci, G., 2003. Attenuation of body waves in Southeastern Sicily (Italy). Phys. Earth Planet. Int. 135, 267–279. Gubbins, D., 2004. Time Series Analysis & Inverse Theory for Geophysicists. Cambridge University Press. Gudmundsson, Ó., Finlayson, D.M., Itikarai, I., Nishimura, Y., Johnson, W.R., 2004. Seismic attenuation at Rabaul volcano, Papua New Guinea. J. Volcanol. Geotherm. Res. 130, 77–92. Gusev, A.A., Abubakirov, I.R., 1999. Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses. Geophys. J. Int. 136, 309–323. Hansen, S., Thurber, C.H., Mandernach, M., Haslinger, F., Doran, C., 2004. Seismic velocity and attenuation structure of the east rift zone and South Flank of Kilauea Volcano, Hawaii. Bull. Seism. Soc. Am. 94, 1430–1440. Ito, H., DeVilbiss, J., Nur, A., 1979. Compressional and shear waves in saturated rock during water–steam transition. J. Geophys. Res. 84, 4731–4735. Lomax, A., Zollo, A., Capuano, P., Virieux, J., 2001. Precise absolute earthquake location under Somma–Vesuvius volcano using a new three-dimensional velocity model. Geophys. J. Int. 146, 313–331. Marianelli, P., Métrich, N., Sbrana, A., 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull. Volcanol. 61, 48–63. Mulargia, F., Tinti, S., 1985. Seismic sample areas defined from incomplete catalogues; an application to the Italian territory. Phys. Earth Planet. Int. 40, 273– 300. Nava, A.F., Garcìa-Arthur, R., Castro, R.R., Suàrez, C., Màrquez, B., Nù˜nez- Cornù, F., Saavedra, G., Toscano, R., 1999. S wave attenuation in the coastal region of Jalisco-Colima, México. Phys. Earth Planet. Int. 115, 247– 257. Sambridge, M.S., Gudmundsson, O., 1998. Tomographic systems of equation with irregular cells. J. Geophys. Res. 103, 773–781. Santacroce, R., 1987. Somma–Vesuvius. CNR, Quaderni di Ricerca Scientifica. Sato, H., Fehler, M.C., 1998. Seismic Wave Propagation and Scattering in the Heterogenous Earth. Springer. Scarpa, R., Tronca, F., Bianco, F., Del Pezzo, E., 2002. High resolution velocity structure beneath Mount Vesuvius from seismic array. Geophys. Res. Lett. 29 (21), 2040. Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., Haberland, C., 2003. Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth. Planet. Sci. Lett. 215, 105–119. Sengupta, M.K., Rendleman, C.A., 1989. Case study: the importance of gas leakage in interpreting amplitude-versus-offset (AVO) analysis. Soc. Explor. Geophys. Abstracts 59, 848–850. Spencer, J., 1979. Bulk and shear attenuation in Berea sandstone: the effects of pore fluids. J. Geophys. Res. 84, 7521–7523. Thurber, C.H., 1987. Seismic structure and tectonics of Kilauea volcano Hawaii. In: Decker, R.W.,Wright, T.L., Stauffer, P.H. (Eds.), Volcanism in Hawaii. US Geological Survey, pp. 919–934. Tondi, R., De Franco, R., 2003. Three-dimensional modeling of Mount Vesuvius with sequential integrated inversion. J. Geophys. Res. 108, 2256. Um, J., Thurber, C.H., 1987. A fast algorithm for two-point seismic ray tracing. Bull. Seism. Soc. Am. 77, 972–986. Wegler, U., 2003. Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the Tomoves active seismic experiment. J. Volcanol. Geotherm. Res. 128, 45–63. Zollo,A., D’Auria, L.,DeMatteis, R., Herrero,A., Virieux, J., Gasparini, P., 2002. Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: imaging of the shallowstructure ofMt, Vesuvius (Southern Italy). Geophys. J. Int. 151, 566–582 | en |
dc.description.obiettivoSpecifico | 3.1. Fisica dei terremoti | en |
dc.description.journalType | JCR Journal | en |
dc.description.fulltext | reserved | en |
dc.contributor.author | De Siena, L. | en |
dc.contributor.author | Del Pezzo, E. | en |
dc.contributor.author | Bianco, F. | en |
dc.contributor.author | Tramelli, A. | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | restricted | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia | - |
crisitem.author.orcid | 0000-0002-3615-5923 | - |
crisitem.author.orcid | 0000-0002-6981-5967 | - |
crisitem.author.orcid | 0000-0001-5400-7724 | - |
crisitem.author.orcid | 0000-0001-6259-5730 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 04. Solid Earth | - |
crisitem.classification.parent | 04. Solid Earth | - |
crisitem.classification.parent | 04. Solid Earth | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
Physics of The Earth and Planetary Interiors 2009 De Siena173.pdf | 1.85 MB | Adobe PDF |
WEB OF SCIENCETM
Citations
20
17
checked on Feb 10, 2021
Page view(s) 50
223
checked on Sep 7, 2024
Download(s)
15
checked on Sep 7, 2024