Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6044
DC FieldValueLanguage
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallNielsen, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMayeda, K.; Weston Geophysical Corporation, Lexington, MA, and University of California, Berkeley, CAen
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.date.accessioned2010-06-21T07:03:10Zen
dc.date.available2010-06-21T07:03:10Zen
dc.date.issued2010-06-01en
dc.identifier.urihttp://hdl.handle.net/2122/6044en
dc.description.abstractThe amount of energy radiated from an earthquake can be measured using recent methods based on earthquake coda signals and spectral ratios. Such methods are not altered by either site or directivity effects, with the advantage of a greatly improved accuracy. Several studies of earthquake sequences based on the above measurements showed evidence of a breakdown in self-similarity in the moment to energy relation. Radiated energy can be also used as a gauge to estimate the average dynamic stress drop on the fault. Here we compute the dynamic stress drop, infer the co-seismic friction and estimate the co-seismic heating resulting from the frictional work during events from different main shock-aftershock earthquake sequences. We relate the dynamic friction to the maximum temperature rise estimated on the faults for each earthquake. Our results are strongly indicative that a thermally triggered dynamic frictional weakening is present, responsible for the breakdown in self-similarity. These observations from seismic data are compatible with recent laboratory evidence of thermal weakening in rock friction under seismic slip-rates, associated to various physical processes such as melting, decarbonation or dehydration.en
dc.description.sponsorshipKevin Mayeda was supported under Weston Geophysical subcontract No. GC19762NGD and AFRL contract No. FA8718-06-C-0024. Work by L. Malagnini was performed under the auspices of the Dipartimento della Protezione Civile, under contract S3 – INGV-DPC (2007-2009), project: “Valutazione rapida dei parametri e degli effetti dei forti terremoti in Italia e nel Mediterraneo”.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/115 (2010)en
dc.subjectearthquake radiationen
dc.subjectcodaen
dc.subjectfrictionen
dc.subjectself-similarityen
dc.subjectdynamic weakeningen
dc.titleEnergy radiation from intermediate to large magnitude earthquakes: implications for dynamic fault weakeningen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06319en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.relation.referencesmato, A., et al. (1998), The 1997 Umbria-Marche, Italy, Earthquake Sequence: A First Look at the Main Shocks and Aftershocks, Geophys. Res. Lett., 25(15), 2861–2864. Barton, C.A., M.D. Zoback, and D. Moos (1995). Fluid flow along potentially active faults in crystalline rock, Geology, 23, n. 8, pp. 683-686. Boncio, P. (2008) - Deep-crust strike-slip earthquake faulting in southern Italy aided by high fluid pressure: insights from rheological analysis. In: WIBBERLEY et al. (Eds.) The internal structure of fault zones: implications for mechanical and fluid-flow properties. Special publication of the Geological Society of London, 299, Ch. 11, DOI: 10.1144/SP299.11. Broberg, B.K. (1999). Cracks and fracture, Academic Press, ISBN 0121341305, 9780121341305, 752 pp. Brodsky, E. E. and H. Kanamori (2001). The elastohydrodynamic lubrication of faults, J. Geophys. Res., 106, 16, 357-16, 374. Brune, J. N., T. L. Henyey, and R. F. Roy (1969), Heat flow, stress, and rate of slip along the San Andreas fault, California, J. Geophys. Res., 74, 3821 – 3827. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997-5009. Brune, J. N. (1971 ). Correction (to Brune (1970)), J. Geophys. Res. 76, 5002. Chiodini, G., C. Cardellini, A. Amato, E. Boschi, S. Caliro, F. Frondini, and G. Ventura (2004). Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett., 31, doi:10.1029/2004GL019480. Caine, J.S., J.P. Evans, and C.B. Forster (1996). Fault zone architecture and permeability structure, Geology, 24; 1025-1028, doi: 10.1130/0091-7613(1996). Carslaw, H.S., and J.C. Jaeger (1959). Conduction of Heat in Solids, Oxford Univ Press. De Paola, N., T. Hirose, T. Mitchell, G. Di Toro, T. Togo, and T. Shimamoto (2008). Thermal Pressurization Induced by Coseismic Shear Heating Within Thermally Unstable Rocks, Eos Trans. AGU, 89(53), Fall Meet. Suppl., Abstract S34B-07. Di Toro, G., D.L. Goldsby, and T.E. Tullis, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436-439, (2004). Di Toro, G., Hirose, T. Nielsen, S., Pennacchioni, G. and T. Shimamoto (2006). Natural and experimental evidence of melt lubrication of faults during earthquakes, Science, 311, 647-649, doi:10.1126/science.1121012. Doan, M. L., E. E. Brodsky, Y. Kano, and K. F. Ma (2006). In situ measurement of the hydraulic diffusivity of the active Chelungpu fault, Taiwan. Geophys. Res. Lett, 33, L16317, doi: 10.1029/2006GL026889. Eshelby, J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. Lond., A241, 376-396. Eshelby, J. D. (1959), The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. London, Ser. A, 252, 561–569. Freund, L.B. (1990). Dynamic fracture mechanics, Cambridge Monograph on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 563 pp. Grawinkel, A., and Stockhert, B. (1997). Hydrostatic pore fluid pressure to 9 km depth : Fluid inclusion evidence from the KTB deep drill hole, Geophys. Res. Lett., vol. 24, no 24, pp. 3273-3276. Griffith, W.; G. Di Toro, G.; Pennacchioni, D. Pollard, and S. Nielsen (2009). Static stress drop associated with brittle slip events on exhumed faults J. Geophys. Res., 114, B02402. Famin, V., S. Nakashima, A.M. Boullier, K. Fujimoto and T. Hirono (2008). Earthquakes produce carbon dioxide in crustal faults, Earth and Planetary Science Letters 265 (3–4), pp. 487–497, doi:10.1016/j.epsl.2007.10.041. Han, R., T. Hirose, and T. Shimamoto (2009). Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates, J. Geophys. Res., in press. Han, R. T. Shimamoto, T. Hirose, J-H Ree, and J. Ando, (2007) Ultralow friction of carbonate faults caused by thermal decomposition, Science, 316, 878-881, (2007). Heaton, T.H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet Int., 64, 1-20. Hirose, T., and M. Bystricky (2007). Extreme weakening of faults during dehydration by coseismic shear heating, Geophys. Res. Lett., 34, L14311, doi:10.1029/2007GL030049. Hunt, J.M. (1990). Generation and migration of petroleum from abnormally pressured fluid compartments, Am. Ass. Petroleum Geol. Bull., 74, pp. 1-12. Ide, S. and G. C. Beroza (2001). Does apparent stress vary with earthquake size?, Geophys. Res. Lett. 28, 3349-3352. Ishikawa, T., M. Tanimizu, K. Nagaishi, J. Matsuoka, O. Tadai, M. Sakaguchi, T. Hirono, T. Mishima, W. Tanikawa, W. Lin, H. Kikuta, W. Soh, and S.-R. Song (2008), Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault, Nature Geoscience, 1, 679-683, doi:10.1038/ngeo308. Izutani, Y. (2005). Radiated energy from the mid Niigata, Japan, earthquake of October 23, 2004, and its aftershocks, Geophys. Res. Lett., 32, L21313, doi:10.1029/2005GL024116. Ito, T., and M.D. Zoback (2000). Fracture permeability and in situ stress to 7 km depth in the KTB Scientific Drillhole, Geophys. Res. Lett., 27, n. 7, pp. 1045-1048. Kanamori, H., and T. Heaton (2000). Microscopic and macroscopic physics of earthquakes, contained in Geocomplexity and the Physics of Earthquakes, Editors J. Rundle, D. Turcotte, and W. Klein, Geophysical Monograph 20, Published by the American Geophysical Union, D.C., 127-141. Kano, Y., J. Mori, R. Fujio, H. Ito, T. Yanagidani, S. Nakao, and K.-F. Ma (2006). Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett ., 33, L14306, doi:10.1029/2006GL026733. Kostrov, B.V., and S. Das (1988). Principles of Earthquake source dynamics, Cambridge Monograph on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 286 pp. Latorre D., De Gori P., Chiarabba C., Amato A., Virieux J. and Monfret T. (2008), Three-dimensional kinematic depth migration of converted waves: application to the 2002 Molise aftershock sequence (southern Italy), Geophysical Prospecting, 56, 587-600, DOI: 10.1111/j.1365-2478.2008.00711.x Ma, K. F., Tanaka, H., Song, S. R., Wang, C. Y., Hung, J. H., Tsai, Y. B., Mori, J., Song, Y. F., Yeh, E. C., Soh, W., Sone, H., Kuo, L. W., and Wu, H. Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473–476, doi:10.1038/nature05253. Ma, K.-F., E.E. Brodsky, J. Mori, C. Ji, T.R. A. Song, and H. Kanamori (2003). Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan earthquake (Mw7.6) Geophys. Res. Lett., 30 (5), 1244, doi:10.1029/2002GL015380. Malagnini, L., and K. Mayeda (2008). High-stress strike-slip faults in the Apennines: An example from the 2002 San Giuliano earthquakes (southern Italy), Geophys. Res. Lett., 35, L12302, doi:10.1029/2008GL034024. Malagnini, L., L. Scognamiglio, A. Mercuri, A. Akinci, and K. Mayeda (2008), Strong evidence for non-similar earthquake source scaling in central Italy, Geophys. Res. Lett., 35, L17303, doi:10.1029/2008GL034310. Mayeda, K., and L. Malagnini (2009). An evolution of a new spectral ratio technique for the analysis of source scaling: an application to the Chi-Chi sequence, Geophys. Res. Lett., 36, L10308, doi: 10.1029/2009GLD37421. Mayeda, K., L. Malagnini, and W.R. Walter (2007), A new spectral ratio method using narrow band coda envelopes: Evidence for non-self-similarity in the Hector Mine sequence, Geophys. Res. Lett., 34, L11303, doi:10.1029/2007GL030041. Mayeda, K., and W.R. Walter (1996). Moment, energy, stress drop and source spectra of Western U.S. earthquakes from regional coda envelopes, J. Geophys. Res., 101, 11,195-11,208. Madariaga, R., (2007), Slippery when hot, Science, Vol. 316. no. 5826, pp. 842 – 843, DOI: 10.1126/science.1142332. Melosh, H.J (1996). Dynamical weakening of faults by acoustic fluidization, Nature 379, 601-606, doi:10.1038/379601a0. Miller, S.A., C. Collettini, L. Chiaraluce, M. Cocco, M. Barchi, and B.J.P. Kaus (2004). Aftershocks driven by a high-pressure CO2 source at depth, Nature, 427, 724-727. Montone, P., A. Amato, and S. Pondrell (1999). Active stress map of Italy, J. Geophys. Res., 104, B11, pp. 25595-25610. Nadeau, R. M., and L.R. Johnson (1998). Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes Bull. Seismol. Soc. Am., 88, 790–814. Nielsen, S., G. Di Toro, T. Hirose, and T. Shimamoto (2008), Frictional melt and seismic slip, J. Geophys. Res., 113, B01308, doi:10.1029/2007JB005122. Noda, H., and N. Lapusta (2009). 3D earthquake sequence simulations with frictional heating and hydro-thermo-mechanical effects (abstract), seminar given on October 12, 2009 at Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy. Ohta, Y., M. Ohzono, S. Miura, and T. Iin (2008). Coseismic fault model of the 2008 Iwate-Miyagi Nairiku earthquake deduced by a dense GPS network Earth Planets Space, 60, 1197-1201, 2008. Peltzer, G. P. Rosen, F. Rogez, and K. Hudnut (1996). Postseismic rebound in fault step-overs caused by pore fluid flow, Science, 273, 1202-1204. Rempel, A. W., and J. R. Rice, Thermal pressurization and onset of melting in fault zones, J. Geophys. Res., 111, B09314, doi:10.1029/2006JB004314, (2006). Revenaugh, J., and C. Reasoner (1997). Cumulative offset of the San Andreas fault in central California: A seismic approach, Geology, 25; no. 2; p. 123-126; doi: 10.1130/0091-7613(1997)025<0123:COOTSA>2.3.CO;2. Rice, J. R., Heating and weakening of faults during earthquake slip, J. Geophys. Res., 111, doi:10.1029/2005JB004006, (2006). Shipton, Z.K., A.M. Soden, J.D. Kirkpatrick, A.M Bright, and R.J. Lunn (2006). How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: radiated energy and the physics of faulting, Geophysical Monograph Series 170, doi: 10.1029/170GM19. Sibson, R.H. (1974). Frictional constraints on thrust, wrench and normal faults, Nature 249, 542 – 54, doi:10.1038/249542a0. Sibson, R.H. (1990). Rupture nucleation on unfavorably oriented faults, Bull Seism. Soc. Am., 80, n. 6, pp 1580-1604. Sibson, R.H. (1992a). Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 211, pp. 283-293. Sibson, R.H. (1992b). Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface, Earth-Science Reviews, 32, pp. 141-144. Sibson, R.H. (1994). Crustal stress, faulting and fluid flow, Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins, Parnell, J. (Ed.), Geol. Soc. Special Publication No. 78, pp. 69-84. Sibson, R. H. (2007), An episode of fault-valve behavior during compressional inversion? The 2004 MJ 6.8 Mid-Niigata Prefecture, Japan earthquake sequence, Earth Planet. Sci. Lett., 257, 188–199.     Snoke, J.A. (1987). Stable determination of (Brune) stress drops, Bull. Seism. Soc. Am., 77, 530-538. Spudich, P. (1998). Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake Bull. Seismol. Soc. Am., 88, 413-427. Suppe, J. (2007). Absolute fault and crustal strength from wedge tapers, Geology, 35, no. 12, p. 1127-1130, doi: 10.1130/G24053A.1. Suppe, J., and L. F. Yue (2008). Pore-fluid pressures and crustal strength, Geophysical Research Abstracts, Vol. 10, EGU2008-A-01970, 2008 SRef-ID: 1607 - 7962/gra/EGU2008-A-01970, EGU General Assembly 2008. Takada, Y., and T. Kobay (2009). Coseismic displacement due to the 2008 Iwate-Miyagi Nairiku earthquake detected by ALOS/PALSAR: preliminary results, Earth Planets Space, 61, e9-e12, 2009. Tanikawa, W. and T. Shimamoto (2009). Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake. J. Geophys. Res., 114, B01402. doi:10.1029/2008JB005750. Tanikawa, W., Shimamoto, T., Wey, W.K., Wu, W.Y., Lin, C.W., and Lai, W.C. (2004). Sedimentation and generation of abnormal fluid pressure in the focal area of 1999 Taiwan Chi-Chi earthquake, In: Proceedings of the ISRM In. Symp. 3rd ARMS, 553-557. Townend, J., and M.D. Zoback (2000). How faulting keeps the crust strong, Geology, 28, n. 5, pp. 399-402. Unsworth, M., G. Egbert, and J. Booker (1999). High-resolution electro-magnetic imaging of the San Andreas fault in Central California, J. Geophys. Res., 104 (B1) 1131-1150, doi: 10.1029/98JB01755. Yue, L.F. (2007). Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures [Ph.D. thesis]: Princeton, New Jersey, Princeton University, 173 p.. Yue, L.-F., J. Suppe, and J.-H. Hung (2005). Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6). J. Struct. Geol., 27, pp. 2058-2083. Yue et al., (2005). Jour. Structural Geol.). Wang, J.-H. (2009). Effect of Thermal Pressurization on Radiation Efficiency, Bull. Seism. Soc. Am. . 99, No. 4, pp. 2293–2304, doi: 10.1785/0120080187. Wang, Z., Y. Fukao, S. Kodaira, and R. Huang (2008). Role of fluids in the initiation of the 2008 Iwate earthquake (M7.2) in northeast Japan, Geophys. Res. Lett., 35, L24303, doi: 10.1029/2008GL035869. Wyss, M. (1970). Observation and interpretation of tectonic strain release mechanisms, Ph.D. Thesis, California Institute Technology, 1970. Zoback, M.D., and J. Townend (2001). Implications of hydrostatic pore pressures at high crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336, pp. 19-30.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorMalagnini, L.en
dc.contributor.authorNielsen, S.en
dc.contributor.authorMayeda, K.en
dc.contributor.authorBoschi, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentWeston Geophysical Corporation, Lexington, MA, and University of California, Berkeley, CAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDurham University, Durham, UK-
crisitem.author.deptUC Berkeley-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.orcid0000-0002-9214-2932-
crisitem.author.orcid0000-0003-0980-0605-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Malagnini_etAl_JGR_Final_Revised9.pdfMain article & figures8.77 MBAdobe PDFView/Open
Show simple item record

Page view(s)

211
checked on Apr 17, 2024

Download(s) 20

436
checked on Apr 17, 2024

Google ScholarTM

Check