Please use this identifier to cite or link to this item:
Authors: Etiope, G. 
Title: EMEP/EEA air pollutant emission inventory guidebook 2009
Other Titles: Technical guidance to prepare national emission inventories
Issue Date: 2009
Series/Report no.: EEA Technical report/9/2009
Keywords: METHANE
Subject Classification03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling 
03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases 
Abstract: Studies performed since 2000 have demonstrated that geologic emissions of methane are an important global greenhouse-gas source (Etiope, 2004; Kvenvolden and Rogers, 2005; Etiope al, 2008). It is recognised that significant amounts of methane, produced within the Earth crust, released naturally into the atmosphere through faults and fractured rocks. Major emissions are related to hydrocarbon production in sedimentary basins (microbial and thermogenic methane), through continuous exhalation and eruptions from more than 1 200 onshore and offshore mud volcanoes, more than 10 000 onshore and shallow marine seeps and through diffuse soil microseepage. Specifically, six source categories must be considered: mud volcanoes, gas seeps (independent of mud volcanism), microseepage (diffuse exhalation from soil in petroleum basins), submarine seepage, geothermal (non-volcanic) manifestations and volcanoes. Global emission estimates range from 42 to 64 Tg y-1 (mean of 53 Tg y-1), almost 10 % of the total CH4 emission, representing the second most important natural methane source after wetlands. Geo-CH4 sources would also represent the missing source of fossil methane recognised in the recent re-evaluation the fossil methane budget in the atmosphere (about 30 %; Lassey et al,, 2007; Etiope et al, 2008), which implies a total fossil methane emission much higher than that due to fossil fuel industry. The global geo-CH4 emission estimates are of the same level as or higher than other sources or sinks considered in the Intergovernmental Panel on Climate Change (IPCC) tables, such as biomass burning, termites and soil uptake. Recent studies indicate that Earth’s degassing also accounts for at least 17 % and 10 % of total ethane and propane emissions (Etiope and Ciccioli, 2009).
Appears in Collections:Reports

Files in This Item:
File Description SizeFormat 
EMEP-EEA-Guidebook2009-GEOSEEPAGE.pdf269.62 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Aug 17, 2018


checked on Aug 17, 2018

Google ScholarTM