Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6039
DC FieldValueLanguage
dc.contributor.authorallDeegan, F. M.; DEPARTMENT OF EARTH SCIENCES, UPPSALA UNIVERSITY, VILLAVAGEN 16, 75236 UPPSALA, SWEDENen
dc.contributor.authorallTroll, V. R.; DEPARTMENT OF EARTH SCIENCES, UPPSALA UNIVERSITY, VILLAVAGEN 16, 75236 UPPSALA, SWEDENen
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMisiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallChadwick, J. P.; DEPARTMENT OF PETROLOGY (FALW), VRIJE UNIVERSITEIT, 1081 HV AMSTERDAM, THE NETHERLANDSen
dc.contributor.authorallMcLeod, C. L.; DEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UKen
dc.contributor.authorallDavidson, J. P.; DEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UKen
dc.date.accessioned2010-06-11T10:55:29Zen
dc.date.available2010-06-11T10:55:29Zen
dc.date.issued2010-02-25en
dc.identifier.urihttp://hdl.handle.net/2122/6039en
dc.description.abstractThere is considerable evidence for continuing, late-stage interaction between the magmatic system at Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within Merapi basaltic-andesite eruptive rocks display textures indicative of intense interaction between magma and crustal carbonate, and Merapi feldspar phenocrysts frequently contain crustally contaminated cores and zones. To resolve the interaction processes between magma and limestone in detail we have performed a series of time-variable decarbonation experiments in silicate melt, at magmatic pressure and temperature, using a Merapi basaltic-andesite and local Javanese limestone as starting materials.We have used in situ analytical methods to determine the elemental and strontium isotope composition of the experimental products and to trace the textural, chemical, and isotopic evolution of carbonate assimilation. The major processes of magma^carbonate interaction identified are: (1) rapid decomposition and degassing of carbonate; (2) generation of a Ca-enriched, highly radiogenic strontium contaminant melt, distinct from the starting material composition; (3) intense CO2 vesiculation, particularly within the contaminated zones; (4) physical mingling between the contaminated and unaffected melt domains; (5) chemical mixing between melts. The experiments reproduce many of the features of magma^carbonate interaction observed in the natural Merapi xenoliths and feldspar phenocrysts. The Ca-rich, high 87Sr/86Sr contaminant melt produced in the experiments is considered as a precursor to the Ca-rich (often ‘hyper-calcic’) phases found in the xenoliths and the contaminated zones inMerapi feldspars.The xenoliths also exhibit micro-vesicular textures that can be linked to the CO2 liberation process seen in the experiments.This study, therefore, provides well-constrained petrological insights into the problem of crustal interaction at Merapi and points toward the substantial impact of such interaction on the volatile budget of the volcano.en
dc.description.sponsorshipSwedish Science Foundation (Vetenskapsrdet) Project FIRBMIUR‘Development of innovative technologies for the environmental protection fromnatural events’en
dc.language.isoEnglishen
dc.relation.ispartofJournal of Petrologyen
dc.relation.ispartofseries5/51(2010)en
dc.subjectcarbon dioxideen
dc.subjectexperimental petrologyen
dc.subjectmagma-carbonate interactionen
dc.subjectMerapien
dc.subject; strontium isotopesen
dc.titleMagma-Carbonate Interaction Processes and Associated CO2 Release at MerapiVolcano, Indonesia: Insights from Experimental Petrologyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1027-1051en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.identifier.doi10.1093/petrology/egq010en
dc.relation.referencesAbdurachman, E. K., Bourdier, J.-L. & Voight, B. (2000). Nue¤ es ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research 100, 345^361. Abratis, M., Schmincke, H.-U. & Hansteen, T. H. (2002). Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Geologische Rundschau 91, 562^582. Annen, C. & Sparks, R. S. J. (2002). Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters 203, 937^955. Ar, I. & Dogu, G. (2001). Calcination kinetics of high purity limestones. Chemical EngineeringJournal 83, 131^137. Barnes, C. G., Prestvik, T., Sundvoll, B. & Surratt, D. (2005). Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north^central Norway. Lithos 80, 179^199. Beard, J. S., Abitz, R. J. & Lofgren, G. E. (1993). Experimental melting of crustal xenoliths from Kilbourne Hole, new Mexico and implications for the contamination and genesis of magmas. Contributions to Mineralogy and Petrology 115, 88^102. Behrens, H. (1995). Determination of water solubilities in high-viscosity silicate glasses: An experimental study on NaAlSi3O8 and KAlSi3O8 melts. EuropeanJournal of Mineralogy 7, 905^920. Blank, J. G. & Brooker, R. A. (1994). Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. In: Carroll, M. R. & Holloway, J. R. (eds) Volatiles in Magmas. Mineralogical Society of America, Reviews in Mineralogy 30, 157^186. Botcharnikov, R., Freise, M., Holtz, F. & Behrens, H. (2005). Solubility of C^O^H mixtures in natural melts: new experimental data and application range of recent models. Annals of Geophysics 48, 633^646. Bourgue, E. & Richet, P. (2001). The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth and Planetary Science Letters 193, 57^68. Camus, G., Gourgaud, A., Mossand-Berthommier, P.-C. & Vincent, P.-M. (2000). Merapi (Central Java, Indonesia): An outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. Journal of Volcanology and Geothermal Research 100, 139^163. Canil, D. (1990). Experimental study bearing on the absence of carbonate in mantle-derived xenoliths. Geology 18, 1011^1013. Chadwick, J. P. (2008). Magma crust interaction in volcanic systems: Case studies from Merapi Volcano, Indonesia, Taupo Volcanic Zone, New Zealand, and Slieve Gullion, N. Ireland: PhD thesis, Trinity College Dublin, pp. 52^181. Chadwick, J. P., Troll, V. R., Ginibre, C., Morgan, D., Gertisser, R., Waight, T. E. & Davidson, J. P. (2007). Carbonate assimilation at Merapi volcano, Java, Indonesia: Insights from crystal isotope stratigraphy. Journal of Petrology 48, 1793^1812. Charbonnier, S. J. & Gertisser, R. (2008). Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. Journal of Volcanology and Geothermal Research 177, 971^982. Charlier, B. L. A.,Wilson, C. J. N., Lowenstern, J. B., Blake, S., Van Calsteren, P.W. & Davidson, J. P. (2005). Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U^Th and U^Pb systematic in zircons. Journal of Petrology 46, 3^32. Charlier, B. L. A., Ginibre, C., Morgan, D., Nowell, G. M., Pearson, D. G., Davidson, J. P. & Ottley, C. J. (2006). Methods for microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology 232, 114^133. Clochiatti, R., Joron, J. L., Kerinec, F. & Treuil, M. (1982). Quelques donne¤ es preliminaries sur la lave du dome actuel du volcan Merapi (Java Indone¤ sie) et sur ses enclaves. Comptes Rendus de l’Acade¤ mie des Sciences, Se¤ rie A 295, 817^822. Curray, J. R., Shor, G. G., Raitt, R.W. & Henry, M. (1977). Seismic refraction and reflection studies of crustal structure of the Eastern Sunda and Western Banda arcs. Journal of Geophysical Research 82, 2479^2489. Dallai, L., Freda, C. & Gaeta, M. (2004). Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contributions to Mineralogy and Petrology 148, 247^263. Davidson, J. P., Hora, J. M., Garrison, J. M. & Dungan, M. A. (2005). Crustal forensics in arc magmas. Journal of Volcanology and Geothermal Research 140, 157^170. de Genevraye, P. & Samuel, L. (1972). Geology of the Kendang Zone (Central and East Java). In: Proceedings, First Annual Convention, Indonesian Petroleum Association, pp.17^30. Del Moro, A., Fulignati, P., Marianelli, P. & Sbrana, A. (2001). Magma contamination by direct wall rock interaction: constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). Journal of Volcanology and Geothermal Research 112, 15^24. Dobson, D. P., Jones, A. P., Rabe, R., Sekine, T., Kurita, K., Taniguchi,T., Kondo,T., Kato,T., Shimomura, O. & Urakawa, S. (1996). In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters 143, 207^215. Donoghue, E., Troll, V. R., Schwarzkopf, L. M., Clayton, G. & Goodhue, R. (2009). Organic block coatings in block-and-ash flow deposits at Merapi Volcano, central Java. Geological Magazine 146, 113^120. Font, L., Davidson, J. P., Pearson, D. G., Nowell, G. M., Jerram, D. A. & Ottley, C. J. (2008). Sr and Pb isotope micro-analysis of plagioclase crystals from Skye lavas: an insight into open-system processes in a flood basalt province. Journal of Petrology 49, 1449^1471. Freda, C. & Baker, D. R. (1998). Na^K interdiffusion in alkali feldspar melts. Geochimica et Cosmochimica Acta 62, 2997^3007. Freda, C., Gaeta, M., Palladino, D. M. & Trigila, R. (1997). TheVilla Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. Journal of Volcanology and Geothermal Research 78, 103^120. Freda, C., Baker, D. R. & Ottolini, L. (2001). Reduction of water loss from gold^palladium capsules during piston cylinder experiments by use of pyrophyllite powder. American Mineralogist 86, 234^237. Freda, C., Gaeta, M., Misiti, V., Mollo, S., Dolfi, D. & Scarlato, P. (2008a). Magma^carbonate interaction: An experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101, 397^415. Freda, C., Gaeta, M., Giaccio, B., Marra, F., Palladino, D. M., Scarlato, P. & Sottili, G. (2008b). Magma^country rock interaction during large mafic explosive eruptions: evidence from Colli Albani (Central Italy). In: Abstracts, 33rd IGC 2008 Oslo, Norway (2008). Fulignati, P., Marianeli, P., Santacroce, R. & Sbrana, A. (2004). Probing theVesuvius magma chamber^host rock interface through xenoliths. Geological Magazine 141, 417^428. Gaeta, M., Di Rocco, T. & Freda, C. (2009). Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate forming processes. Journal of Petrology 50, 361^385. Garc|¤ a-Moreno, O., Castro, A., Corretge¤ , L. G. & El-Hmidi, H. (2006). Dissolution of tonalitic enclaves in ascending hydrous granitic magmas: An experimental study. Lithos 89, 245^258. Gasparon, M. & Varne, R. (1998). Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineralogy and Petrology 64, 89^117. Gasparon, M., Hilton, D. R. & Varne, R. (1994). Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia. Earth and Planetary Science Letters 126, 15^22. Gertisser, R. (2001). Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD thesis: Universita« t Freiburg. Gertisser, R. & Keller, J. (2003).Trace elements and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from MerapiVolcano, Central Java, Indonesia: Evidence for the involvement of subducted sediments in Sunda arc magma genesis. Journal of Petrology 44, 457^489. Gilg, H. A., Lima, A., Somma, R., Belkin, H. E., De Vivo, B. & Ayuso, R. A. (2001). Isotope geochemistry and fluid inclusion study of skarns fromVesuvius. Mineralogy and Petrology 73, 145^176. Giordano, D., Russell, J. K. & Dingwell, D. B. (2008). Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters 271, 123^134. Goff, F., Love, S. P., Warren, R. G., Counce, D., Obenholzner, J., Siebe, C. & Schmidt, S. C. (2001). Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocate¤ petl volcano, Mexico. Chemical Geology 177, 133^156. Grasset, O. & Albare' de, F. (1994). Hybridization of mingling magmas with different densities. Earth and Planetary Science Letters 121, 327^332. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353^431. Hamilton,W. (1979). Tectonics of the Indonesian Region. US Geological Survey, Professional Papers 1078, 1^345. Harris, A. J. L. & Ripepe, M. (2007). Regional earthquakes as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophysical Research Letters 34, LO2304, doi:10.1029/ 2006GL028251. Hilton, D. R., Fischer,T. P. & Marty, B. (2002). Noble gases and volatile recycling at subduction zones. In: Porcelli, D. P., Ballentine, C. J. & Wieler, R. (eds) Noble Gases. Mineralogical Society of America, Reviews in Mineralogy 47, 319^370. Huang, W.-L., Wyllie, P. J. & Nehru, C. E. (1980). Subsolidus and liquidus phase relationships in the system CaO^SiO2^CO2 to 30 kbar with geological applications. American Mineralogist 65, 285^301. Hudon, P., Baker, D. R. & Toft, P. B. (1994). A high-temperature assembly for 1·91cm (3/400) piston-cylinder apparatus. American Mineralogist 79, 145^147. Iacono Marziano, G., Gaillard, F. & Pichavant, M. (2008). Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contributions to Mineralogy and Petrology 155, 719^738. Iezzi, G., Mollo, S., Ventura, G., Cavallo, A. & Romano, C. (2008). Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: The role of nucleation kinetics. Chemical Geology 253, 91^101. Irving, A. J. & Wyllie, P. J. (1975). Subsolidus and melting relationships for calcite, magnesite and the join CaCO3^MgCO3 to 36 kb. Geochimica et Cosmochimica Acta 39, 35^53. Johnston, A. D. & Wyllie, P. J. (1988). Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contributions to Mineralogy and Petrology 98, 352^362. King, P. L. & Holloway, J. R. (2002). CO2 solubility and speciation in intermediate (andesitic) melts: The role of H2O and composition. Geochimica et Cosmochimica Acta 66, 1627^1640. Knesel, K. M. & Davidson, J. P. (2002). Insights into collisional magmatism from isotopic fingerprints of melting reactions. Science 296, 2206^2208. Koulakov, I., Bohm, M., Asch, G., Lu« hr, B.-G., Manzanares, A., Brotopuspito, K. S., Fauzi, P., Purbawinata, M. A., Puspito, N. T., Ratdomopurbo, A. Kopp, H., Rabbel, W. & Sheykunova, E. (2007). P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. Journal of Geophysical Research 112, B08310, doi:10.1029/2006JB004712. Lee,W.-J. & Wyllie, P. J. (1998). Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO^ (MgOþFeO)^(Na2OþK2O)^(SiO2þAl2O3þTiO2)^CO2. Journal of Petrology 39, 495^517. Macdonald, R., Hawkesworth, C. J. & Heath, E. (2000). The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Science Reviews 49, 1^76. Macpherson, C. G., Gamble, J. A. & Mattey, D. P. (1998). Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec^Hikurangi margin, SW Pacific. Earth and Planetary Science Letters 160, 609^621. McLeod, P. & Sparks, S. J. (1998). The dynamics of xenoliths assimilation. Contributions to Mineralogy and Petrology 132, 21^33. Me¤ dard, E., McCammon, C. A., Barr, J. A. & Grove, T. L. (2008). Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. American Mineralogist 93, 1838^1844. Misiti, V., Taddeucci, J., Freda, C., Deegan, F., Troll, V. & Blythe, L. (2008). Vesiculation of andesitic melts during carbonate assimilation. In: Abstracts, 12th International Conference on Experimental Mineralogy, Petrology and Geochemistry (EMPG-XII), Innsbruck, Austria (2008). Mitchell, R. H. (2009). Peralkaline nephelinite^natrocarbonatite immiscibility and carbonate assimilation at Oldoinyo Lengai, Tanzania. Contributions to Mineralogy and Petrology 158, 589^598. Mollo, S., Gaeta, M., Freda, C. & Di Rocco, T. (2010). Carbonate assimilation in magmas: A reappraisal based on experimental petrology. Lithos 114, 503^514. Nakagawa, M., Wada, K. & Wood, P. (2002). Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. Journal of Petrology 43, 2279^2303. Newman, S. & Lowenstern, J. B. (2002).VolatileCalc: a silicate melt^ H2O^CO2 solution model written in Visual Basic for excel. Computers and Geosciences 28, 597^604. Poli, G., Tommasini, S. & Halliday, A. N. (1996). Trace element and isotopic exchange during acid^basic magma interaction processes. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 225^232. Powell, R. & Holland,T. J. B. (1988). An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Application to geobarometry, worked examples and a computer program. Journal of Metamorphic Petrology 6, 173^204. Richet, P. & Bottinga, Y. (1995). Rheology and configurational entropy of silicate melts. In: Stebbins, J. F., McMillan, P. F. & Dingwell, D. B. (eds) Structure, Dynamics and Properties of Silicate Melts. Mineralogical Society of America, Reviews in Mineralogy and Geochemistry 32, 67^93. Sachs, P. M. & Strange, S. (1993). Fast assimilation of xenoliths in magmas. Journal of Geophysical Research 98, 19741^19754. Schaaf, P., Stimac, J., Siebe, C. & Macias, J. L. (2005). Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocate¤ petl and surrounding monogenetic volcanoes, Central Mexico. Journal of Petrology 46, 1243^1282. Schwarzkopf, L. M., Schmincke, H.-U. & Troll, V. R. (2001). Pseudotachylite on impact marks of block surfaces in block-andash flows at Merapi volcano, Central Java, Indonesia. Geologische Rundschau 90, 769^775. Schwarzkopf, L. M., Schmincke, H.-U. & Cronin, S. J. (2005). A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flows. Journal of Volcanology and Geothermal Research 139, 117^134. Seedhouse, J. K. & Donaldson, C. H. (1996). Compositional convection caused by olivine crystallization in a synthetic basalt melt. MineralogicalMagazine 60, 115^130. Smith, I. E. M., Worthington, T. J., Price, R. C., Stewart, R. B. & Maas, R. (2006). Petrogenesis of dacite in an oceanic subduction environment: Raooul Island, Kermadec arc. Journal of Volcanology and Geothermal Research 156, 252^265. Smith,T. E.,Thirlwall, M. F. & Macpherson, C. (1996).Trace element and isotopic geochemistry of the volcanic rocks of Bequia, Grenadine Islands, lesser Antilles Arc: a study of subduction enrichment and intra-crustal contamination. Journal of Petrology 37, 117^143. Smyth, H. R., Hall, R., Hamilton, J. & Kinny, P. (2005). East Java: Cenozoic basins, volcanoes and ancient basement. In: Proceedings, Indonesian Petroleum Association, Thirtieth Annual Convention & Exhibition. Smyth, H. R., Hamilton, P. J., Hall, R. & Kinny, P. D. (2007). The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters 258, 269^282. Sparks, R. S. J., Barclay, J., Jaupart, H. M. & Philips, J. C. (1994). Physical aspects of magma degassing 1: Experimental and theoretical constraints on vesiculation. In: Carroll, M. R. & Holloway, J. R. (eds) Volatiles in Magmas, Mineralogical Society of America, Reviews in Mineralogy 30, 413^445. Stern, K. H. & Weise, E. L. (1969). High temperature properties and decomposition of inorganic salts. Part 2: Carbonates. National Standard Reference Data System, National Bureau of Standards (U.S.) 30, 32 p. Troll, V. R., Schwarzkopf, L. M., Gertisser, R., Buckley, C., Chadwick, J., Zimmer, M. & Sulistiyo, Y. (2003). Shallow-level processes and their impact on the eruptive behaviour in arc volcanoes: evidence from recent Merapi lavas. In: Abstracts, State of the Arc Meeting, Portland, Oregon (2003). Troll,V. R., Donaldson, C. H. & Emeleus, C. H. (2004). Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland. Contributions to Mineralogy and Petrology 147, 722^739. Untung, M. & Sato, Y. (1978). Gravity and Geological studies in Java, Indonesia. Geological Survey of Indonesia and Geological Survey of Japan, Special Publication 6, 207 p. van Bemmelen, R.W. (1949).The Geology of Indonesia, 1A, General Geology. The Hague: Government Printing Office. Voight, B., Constantine, E. K., Siswowidjoyo, S. & Torley, R. (2000). Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768^1998. Journal of Volcanology and Geothermal Research 100, 69^138. Wagner, D., Koulakov, I., Rabbel, W., Luehr, B.-G., Wittwer, A., Kopp, H., Bohm, M. & Asch, G. & the MERAMEX Scientists (2007). Joint inversion of active and passive seismic data in Central Java. GeophysicalJournal International 170, 923^932. Walter, T. R., Wang, R., Zimmer, M., Grosser, H., Lu« hr, B. & Ratdomopurbo, A. (2007). Volcanic activity influenced by tectonic earthquakes: static and dynamic stress triggering at Mt. Merapi. Geophysical Research Letters 34, L05304, doi:10.1029/2006GL028710. Walter, T. R., Wang, R., Luehr, B.-G., Wassermann, J., Behr, Y., Parolai, S., Anggraini, A., Gu« nther, E., Sobiesiak, M., Grosser, H., Wetzel, H.-U., Milkereit, C., Sri Brotopuspito, P. J. K., Harjadi, P. & Zschau, J. (2008). The 26 May 2006 magnitude 6·4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster? Geochemistry, Geophysics, Geosystems 9, doi:10.1029/ 2007GC001810. Watson, E. B. (1982). Basalt contamination by continental crust: some experiments and models. Contributions to Mineralogy and Petrology 80, 73^87. Watson, E. B. & Jurewicz, S. R. (1984). Behavior of alkalis during diffusive interaction of granitic xenoliths with basaltic magma. Journal of Geology 92, 121^131. Watson, E. B., Sneeringer, M. A. & Ross, A. (1982). Dissolution of dissolved carbonate in magmas: experimental results and applications. Earth and Planetary Science Letters 61, 346^358.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDeegan, F. M.en
dc.contributor.authorTroll, V. R.en
dc.contributor.authorFreda, C.en
dc.contributor.authorMisiti, V.en
dc.contributor.authorChadwick, J. P.en
dc.contributor.authorMcLeod, C. L.en
dc.contributor.authorDavidson, J. P.en
dc.contributor.departmentDEPARTMENT OF EARTH SCIENCES, UPPSALA UNIVERSITY, VILLAVAGEN 16, 75236 UPPSALA, SWEDENen
dc.contributor.departmentDEPARTMENT OF EARTH SCIENCES, UPPSALA UNIVERSITY, VILLAVAGEN 16, 75236 UPPSALA, SWEDENen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDEPARTMENT OF PETROLOGY (FALW), VRIJE UNIVERSITEIT, 1081 HV AMSTERDAM, THE NETHERLANDSen
dc.contributor.departmentDEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UKen
dc.contributor.departmentDEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UKen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geosciences, Swedish Museum of Natural History-
crisitem.author.deptUppsala University-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDEPARTMENT OF PETROLOGY (FALW), VRIJE UNIVERSITEIT, 1081 HV AMSTERDAM, THE NETHERLANDS-
crisitem.author.deptDepartment of Earth Sciences, Durham University,-
crisitem.author.deptDEPARTMENT OF EARTH SCIENCES, THE UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UK-
crisitem.author.orcid0000-0002-9065-9225-
crisitem.author.orcid0000-0003-1891-3396-
crisitem.author.orcid0000-0002-2320-8096-
crisitem.author.orcid0000-0002-6151-7789-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Deegan et al uncorrected proof Jan2010.pdfmain article - uncorrected proof2.14 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

89
checked on Feb 10, 2021

Page view(s)

242
checked on Apr 20, 2024

Download(s) 10

620
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric