Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/602
DC FieldValueLanguage
dc.contributor.authorallSavov, I. P.; University of South Florida, Geology Departmenten
dc.contributor.authorallHickey-Vargas, R.; Florida International University, Department of Earth Sciencesen
dc.contributor.authorallD'Antonio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallRyan, J. G.; University of South Florida, Geology Departmenten
dc.contributor.authorallSpadea, P.; Università di Udine, Dipartimento Georisorse e Territorioen
dc.date.accessioned2005-12-20T10:48:24Zen
dc.date.available2005-12-20T10:48:24Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/602en
dc.description.abstractSite 1201D of Ocean Drilling Program Leg 195 recovered basaltic and volcaniclastic units from the West Philippine Basin that document the earliest history of the Izu–Bonin–Mariana convergent margin. The stratigraphic section recovered at Site 1201D includes 90 m of pillow basalts, representing the West Philippine Basin basement, overlain by 459 m of volcaniclastic turbidites that formed from detritus shed from the Eocene–Oligocene proto-Izu–Bonin–Mariana island arc. Basement basalts are normal mid-ocean ridge basalt (N-MORB), based on their abundances of immobile trace elements, although fluid-mobile elements are enriched, similar to back-arc basin basalts (BABB). Sr, Nd, Pb and Hf isotopic compositions of the basement basalts are similar to those of basalts from other West Philippine Basin locations, and show an overall Indian Ocean MORB signature, marked by high 208Pb/204Pb for a given 206Pb/204Pb and high 176Hf/177Hf for a given 143Nd/ 144Nd. Trace element and isotopic differences between the basement and overlying arc-derived volcaniclastics are best explained by the addition of subducted sediment or sediment melt, together with hydrous fluids from subducted oceanic crust, into the mantle source of the arc lavas. In contrast to tectonic models suggesting that a mantle hotspot was a source of heat for the early Izu–Bonin–Mariana arc magmatism, the geochemical data do not support an enriched, ocean island basalt (OIB)-like source for either the basement basalts or the arc volcanic section.en
dc.format.extent480 bytesen
dc.format.extent1776547 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameClarendon Pressen
dc.relation.ispartofJournal of petrologyen
dc.subjectBack-arc basaltsen
dc.subjectIzu–Bonin–Marianasen
dc.subjectPhilippine Seaen
dc.subjectSubduction initiationen
dc.subjectOcean Drilling Program Leg 195en
dc.titlePetrology and Geochemistry of West Philippine Basin Basalts and Early Palau–Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu–Bonin–Mariana Arcen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-23en
dc.identifier.URLhttp://petrology.oxfordjournals.org/en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.identifier.doi10.1093/petrology/egi075en
dc.relation.referencesArculus, R. J., Gill, J. B., Cambray, H., Chen, W. & Stern, R. J. (1995). Geochemical evolution of arc systems in the western Pacific: the ash and turbidite record recovered by drilling. In: Taylor, B. & Natland, J. (eds) Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph, American Geophysical Union 88, 45–65. Bizimis, M., Sen, G. & Salters, V. (2004). Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth and Planetary Science Letters 217, 43–58. Cosca, M. A., Arculus, R. J., Pearce, J. A. & Mitchell J. G. (1998). 40Ar/39Ar and K/Ar age constraints for the inception and early evolution of the Izu–Bonin–Mariana arc system. Island Arc 7, 579–595. D’Antonio, M. & Kristensen, M. B. (2004). Hydrothermal alteration of oceanic crust in the West Philippine Sea Basin (Ocean Drilling Program Leg 195, Site 1201): inferences from a mineral chemistry investigation. Mineralogy and Petrology 83, 87–112. D’Antonio, M., Savov, I. P., Hickey-Vargas, R. & Leg 195 Scientific Party (2001). Petrology of igneous rocks cored at South Chamorro Seamount and West Philippine Sea, ODP Leg 195. 4th European ODP Forum, Tromsø, Norway, 10–12 April. Norwegian Geological Society, Abstracts and Proceedings 3, 34. Deschamps, A. & Lallemand, S. (2002). The West Philippine Basin: an Eocene to Early Oligocene back-arc basin opened between two opposed subduction zones. Journal of Geophysical Research 107, 2322–2346. Deschamps, A. & Lallemand, S. (2005). Geodynamic setting of Izu–Bonin–Mariana boninites. In: Intra-Oceanic Subduction Systems. Geological Society, London, Special Publications (in press). Elliott, T. (2003). Tracers of the slab. In: Eiler, J. (ed.) Inside the Subduction Factory. American Geophysical Union Monograph 138, 23–45. Elliott, T., Plank, T., Zindler, A., White, W. M. & Bourdon, B. (1997). Element transport from subducted slab to juvenile crust at the Mariana Arc. Journal of Geophysical Research 102, 14991–15019. Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., Ishisuka, O., Haraguchi, S. & Ishii, T. (1999). Enigmatic extinct spreading center in the Western Philippine backarc basin unveiled. Geology 27, 1135–1138. Gill, J. B., Hiscott, R. N. & Vidal, P. (1994). Turbidite geochemistry and evolution of Izu–Bonin arc and continents. Lithos 33, 135–168. Hall, R., Ali, J. R., Anderson, C. D. & Backer, S. J. (1995). Origin and motion history of the Philippine Sea Plate. Tectonophysics 251, 229–250. Hawkins, J. & Castillo, P. (1998). Early history of the Izu–Bonin–Mariana arc system: evidence from Belau and the Palau Trench. Island Arc 7(3), 559–569. Hickey-Vargas, R. (1989). Boninites and tholeiites from DSDP Hole 458, Mariana forearc. In: Crawford, A. J. (ed.) Boninites. London: Unwin Hyman, pp. 339–356. Hickey-Vargas, R. (1991). Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine Sea plate. Earth and Planetary Science Letters 107, 290–304. Hickey-Vargas, R. (1998a). Geochemical characteristics of ocean island basalts from the West Philippine basin: implications for the sources of Southeast Asian plate margin and intraplate basalts. In: Flower, M., Chung, S.-L., Lo, C. H. & Lee, T.-Y. (eds) Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series Monograph, American Geophysical Union 27, 365–384. Hickey-Vargas, R. (1998b). Origin of the Indian Ocean-type isotopic signature in basalts from the West Philippine Sea plate spreading centers: an assessment of local vs large scale processes. Journal of Geophysical Research 103, 20963–20979. Hickey-Vargas, R. & Reagan, M. K. (1987). Temporal variation of isotope and rare earth element abundances in volcanic rocks from Guam: implications for the evolution of the Mariana arc. Contributions to Mineralogy and Petrology 97, 497–508. Hickey-Vargas, R., Hergt, J. M. & Spadea, P. (1995). The Indian Ocean-type isotopic signature in West Pacific marginal basins: origin and significance. In: Taylor, B. & Natland, J. (eds) Active Margins and Marginal Basins of the Western Pacific. Geophysical Monograph, American Geophysical Union 88, 175–197. Hickey-Vargas, R., Savov, I. P., Bizimis, M., Okino, K., Fujioka, K. & Ishii, T. (2005). Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: implications for tectonic models. American Geophysical Union Monograph (in press). Hilde, T. W. C. & Lee, C.-S. (1984). Origin and evolution of the West Philippine Basin: a new interpretation. Tectonophysics 102, 85–104. Hussong, D. M. & Uyeda, S. (1981). Tectonic processes and the history of the Mariana Arc, a synthesis of the results of the Deep Sea Drilling Project, Leg 60. In: Hussong, D. M., Uyeda, S., et al. (eds), Initial Reports of the Deep Sea Drilling Project, 60. Washington, DC: US Government Printing Office, pp. 909–929. Johnson, M. C. & Plank, T. (1999). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1999GC000014 (www.g-cubed.org). Kelley, K. A., Plank, T., Ludden, J. & Staudigel, H. (2003). Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems 4(6), 2002GC000435 (www.g-cubed.org). Langmuir, C. H., Klein, E. & Plank, T. (1992). Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Phipps Morgan, J., Blackman, D. K. & Sinton, J. M. (eds) Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph, American Geophysical Union 71, 183–280. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali– silica diagram. Journal of Petrology 27, 745–750. Macpherson, C. G. & Hall, R. (2001). Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc. Earth and Planetary Science Letters 186, 215–230. Marsh, N. G., Saunders, A. D. Tarney, J. & Dick, H. (1980). Geochemistry of basalts from the Shikoku and Daito basins, Deep Sea Drilling Project Leg 58. In: deVries, G., Klein, K., Kobayashi, K., et al. (eds) Initial Reports, Deep Sea Drilling Project, 58. Washington, DC: US Government Printing Office, pp. 805–842. Mattey, D. P. Marsh, N. G. & Tarney, J. (1981). The geochemistry, mineralogy and petrology of basalts from the West Philippine and Parece Vela Basins and from the Palau–Kyushu and West Mariana Ridges, Deep Sea Drilling Project Leg 59. In: Kroenke, L., Scott, R., et al. (eds) Initial Reports Deep Sea Drilling Project, 59. Washington, DC: US Government Printing Office, pp. 753–797. Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–775. Okino, K., Ohara, Y., Kasuga, S. & Kato, Y. (1999). The Philippine Sea: a new survey results reveal the structure and history of the marginal basins. Geophysical Research Letters 26, 2287–2290. Pearce, J. A., Thirlwall, M. F., Ingram, G., Murton, B. J., Arculus, R. J. & van der Laan, S. R. (1992). Isotopic evidence for the origin of boninites and related rocks drilled in the Izu–Bonin (Osagawara) forearc, Leg 125. In: Fryer, P., Pearce, J. A., Stokking, L. B., et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 125. College Station, TX: Ocean Drilling Program, pp. 487–507. Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. (1999). Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc–basin systems. Journal of Petrology 40, 1579–1611. Plank, T. & Langmuir, C. H. (1998). The chemical composition of subducted sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–394. Prinkney, D. R., Gill, J. & Williams, R.W. (2002). Hf isotopes and concentration anomalies in the Izu arc. EOS Transactions, American Geophysical Union 83(T72A-1246), F1322. Reagan, M. K., Hickey-Vargas, R. & Hanan, B. (2002) Evolution of IBM arc outputs. NSF MARGINS/IFREE Workshop on the Izu–Bonin–Mariana Subduction System, Honolulu, Hawaii, 8–13 September. http://www.margins.wustl.edu/SF/I-B-M/ IZUBonin.html. Salisbury, M. H., Shinohara, M., Richter, C., et al. (eds) (2002). Proceedings of the Ocean Drilling Program, Initial Reports, 195. College Station, TX: Ocean Drilling Program [CD-ROM]. Savov, I. P., Hickey-Vargas, R., Ryan, J. G. & D’Antonio, M. (2001). Pb isotope ratios in basalts from the West Philippine Backarc Basin, Leg 195, Site 1201D. EOS Transactions, American Geophysical Union 82, 47. Seno, T. & Maruyama, S. (1984). Paleogeographic reconstruction and motion history of the Philippine Sea. Tectonophysics 102, 53–84. Shipboard Scientific Party (2002). Site 1201. In: Salisbury, M. H., Shinohara, M., Richter, C., et al. (eds) Proceedings of the Ocean Drilling Program, Initial Reports, 195. College Station, TX: Ocean Drilling Program [CD-ROM]. Stern, R. J. (2004). Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226, 275–292. Stern, R., Morris, J., Bloomer, S. & Hawkins, J. (1991). The source of the subduction component in convergent margin magmas: trace element and radiogenic isotope evidence from Eocene boninites, Mariana forearc. Geochimica et Cosmochimica Acta 55, 1467–1481. Stern, R. J., Fouch, M. J. & Klemperer, S. (2003). An overview of the Izu–Bonin–Mariana Subduction Factory. In: Eiler, J. (ed.) Inside the Subduction Factory. American Geophysical Union Monograph 138, 175–222. Stolper, E. & Newman, S. (1994). The role of water in the petrogenesis of Mariana Trough magmas. Earth and Planetary Science Letters 121, 293–325. Straub, S. (1997). Multiple sources of Quaternary tephra layers in the Mariana Trough. Journal of Volcanology and Geothermal Research 76, 251–276. Sun, S. S. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. S. & Norrey, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313– 346. Taylor, B. (1992). Rifting and the volcanic–tectonic evolution of the Izu–Bonin–Mariana arc. In: Taylor, B., Fujioka, K., et al. (eds) Proceedings of the Ocean Drilling Program, Scintific Results, 126. College Station, TX: Ocean Drilling Program, pp. 627–651. Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. (1993). Recalibration of NBS lead standards using a 202Pb þ 205Pb double spike. Terra Abstracts 5, 396. Uyeda, S. & Ben Avraham, Z. (1972). Origin and development of the Philippine Sea. Nature 240, 176–178. Wood, D. A. (1979). A variably veined suboceanic upper mantle—genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology 7, 499–503. Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. (2001). Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth and Planetary Science Letters 192, 331–346.en
dc.description.fulltextpartially_openen
dc.contributor.authorSavov, I. P.en
dc.contributor.authorHickey-Vargas, R.en
dc.contributor.authorD'Antonio, M.en
dc.contributor.authorRyan, J. G.en
dc.contributor.authorSpadea, P.en
dc.contributor.departmentUniversity of South Florida, Geology Departmenten
dc.contributor.departmentFlorida International University, Department of Earth Sciencesen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentUniversity of South Florida, Geology Departmenten
dc.contributor.departmentUniversità di Udine, Dipartimento Georisorse e Territorioen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Terrestrial Magnetism, Carnegie Institution of-
crisitem.author.deptDepartment of Earth Sciences, Florida International University, Miami, FL., U.S.A.-
crisitem.author.deptUniversità di Napoli "Federico II"-
crisitem.author.deptGeology Department, University of South Florida, Tampa, Florida,-
crisitem.author.deptDipartimento di Georisorse e Territorio, Università Udine, Italy.-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Savov I..pdf1.73 MBAdobe PDF
journal of petrology.htmredirect - journal of petrology480 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

53
checked on Feb 10, 2021

Page view(s) 20

288
checked on Apr 24, 2024

Download(s)

64
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric