Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/6018
DC FieldValueLanguage
dc.contributor.authorallMaffione, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFaccenna, C.; Dipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
dc.contributor.authorallRossello, E.; CONICET, Departamento de Ciencias Geológicas, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentinaen
dc.date.accessioned2010-05-25T09:56:37Zen
dc.date.available2010-05-25T09:56:37Zen
dc.date.issued2010-01en
dc.identifier.urihttp://hdl.handle.net/2122/6018en
dc.description.abstractThe southernmost segment of the Andes of southern Patagonia and Tierra del Fuego forms a ∼700 km long orogenic re-entrant with an interlimb angle of ∼90° known as Patagonian orocline. No reliable paleomagnetic evidence has been gathered so far to assess whether this great orogenic bend is a primary arc formed over an articulated paleomargin, or is due to bending of a previously less curved (or rectilinear) chain. Here we report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) study carried out on 22 sites (298 oriented cores), predominantly sampled in Eocene marine clays from the external Magallanes belt of Tierra del Fuego. Five sites (out of six giving reliable paleomagnetic results) containing magnetite and subordinate iron sulphides yield a positive fold test at the 99% significance level, and document no significant rotation since ∼50 Ma. Thus, the Patagonian orocline is either a primary bend, or an orocline formed after Cretaceous–earliest Tertiary rotations. Our data imply that the opening of the Drake Passage between South America and Antarctica (probably causing the onset of Antarctica glaciation and global climate cooling), was definitely not related to the formation of the Patagonian orocline, but was likely the sole consequence of the 32±2 Ma Scotia plate spreading. Well-defined magnetic lineations gathered at 18 sites from the Magallanes belt are sub-parallel to (mostly E–W) local fold axes, while they trend randomly at two sites from the Magallanes foreland. Our and previous AMS data consistently show that the Fuegian Andes were characterized by a N–S compression and northward displacing fold–thrust sheets during Eocene–early Miocene times (50–20 Ma), an unexpected kinematics considering coeval South America–Antarctica relative motion. Both paleomagnetic and AMS data suggest no significant influence from the E–W left-lateral Magallanes–Fagnano strike–slip fault system (MFFS), running a few kilometres south of our sampling sites. We thus speculate that strike–slip fault offset in the Fuegian Andes may range in the lower bound values (∼20 km) among those proposed so far. In any case our data exclude any influence of strike–slip tectonics on the genesis of the great orogenic bend called Patagonian orocline.en
dc.language.isoEnglishen
dc.publisher.nameELSEVIERen
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/289 (2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5517en
dc.subjectpaleomagnetismen
dc.subjecttectonicsen
dc.subjectPatagonian oroclineen
dc.subjectFuegian Andesen
dc.subjectDrake Passageen
dc.subjectMagallanes belten
dc.titlePaleomagnetic evidence for a pre-early Eocene (∼50 Ma) bending of the Patagonian orocline (Tierra del Fuego, Argentina): Paleogeographic and tectonic implicationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber273–286en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1016/j.epsl.2009.11.015en
dc.relation.referencesAverbuch, O., Mattei, M., Kissel, C., Frizon de Lamotte, D., Speranza, F., 1995. Cinématique des déformations au sein d'un systéme chevauchant aveugle: l'exemple de la “Montagna dei Fiori” (front des Apenins centraux, Italie). Bull. Soc. Géol. Fr. 5, 451–461. Baraldo, A., Rapalini, A., Tassone, A., Lippai, H., Menichetti, M., Lodolo, E., 2002. Estudio paleomagnético del intrusivo del cerroHewhoepen, Tierra del Fuego, y sus implicancias tectónicas. 15° Congreso Geológico Argentino, El Calafate. Actas 1, 285–290. Barker, P.F., 2001. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth-Sci. Rev. 55, 1–39. Barker, P.F., Filippelli, G.M., Florindo, F., Martin, E.E., Scher, H.D., 2007a. Onset and role of the Antarctic Circumpolar Current. Deep-Sea Res. II 54, 2388–2398. Barker, P.F., Diekmann, B., Escutia, C., 2007b. Onset of Cenozoic Antarctic glaciation. Deep-Sea Res. II 54, 2293–2307. Beck Jr., M.E., 1988. Block rotations in continental crust: examples from Western North America. In: Kissel, C., Laj, C. (Eds.), Paleomagnetic Rotations and Continental Deformation. Kluwer Academic, Dordrecht. Beck Jr., M.E., Burmester, R., Cembrano, J., Drake, R., García, A., Hervé, F., Munizaga, F., 2000. Paleomagnetism of the North Patagonian Batholith, southern Chile. An exercise in shape analysis. Tectonophysics 326 (1–2), 185–202. Besse, J., Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. 107 (B11), 2300. doi:10.1029/2000jb000050. Burns, K.L., Rickard, M.J., Belbin, L., Chamalaun, F., 1980. Further paleomagnetic confirmation of the Magallanes orocline. Tectonophysics 63, 75–90. Carey, S.W., 1958. The tectonic approach to continental drift, in continental drift: a symposium. Geology Department, Univ. Tasmania, Hobart, Tasmania. 177–355. Codignotto, J.O., Malumián, N., 1981. Geología de la región al Norte del paralelo 54 S. de la Isla Grande de Tierra del Fuego. Rev. Asoc. Geol. Argent. 36, 44–88. Cunningham,W.D., 1993. Strike–slip faults in the southernmost Andes and development of the Patagonian orocline. Tectonics 12 (1), 169–186. Cunningham, W.D., 1994. Uplifted ophiolitic rocks on Isla Gordon, southernmost Chile: implications for the closure history of the rocas Verdesmarginal basin and the tectonic evolution of the Beagle Channel region. J. South Am. Earth Sci. 7 (2), 135–147. Cunningham, W.D., 1995. Orogenesis at the southern tip of the Americas: the structural evolution of the Cordillera Darwin metamorphic complex, southernmost Chile. Tectonophysics 244, 197–229. Cunningham, W.D., Klepeis, K.A., Gose, W.A., Dalziel, I.W.D., 1991. The Patagonian orocline: new paleomagnetic data from the Andean magmatic arc in Tierra del Fuego, Chile. J. Geophys. Res. 96 (B10), 16061–16067. Dalziel, I.W.D., Palmer, K.F., 1979. Progressive deformation and orogenic uplift at the southernmost extremity of the Andes. Geol. Soc. Amer. Bull. 90, 259–280. Dalziel, I.W.D., Kligfield, T., Lowrie, W., Opdyke, N.D., 1973. Paleomagnetic data from the southernmost Andes and the Antarctandes. In: Tarling, D.H., Runcorn, S.K. (Eds.), Implication of Continental Drift to the Earth Sciences, vol. 1. Academic Press, London, pp. 37–101. Dalziel, I.W.D., De Wit, M.F., Palmer, K.F., 1974. Fossil marginal basin in the southern Andes. Nature 250, 291–294. Deamer, G.A., Kodama, K.P., 1990. Compaction induced inclination shallowing in synthetic and natural clay-rich sediments. J. Geophys. Res. 95 (B4), 4511–4529. Demarest, H.H., 1983. Error analysis of the determination of tectonic rotation from paleomagnetic data. J. Geophys. Res. 88, 4321–4328. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., 1990. Current plate motions. Geophys. J. Int. 101, 425–478. Diraison, M., 1998. Evolution cénozoïque du Bassin de Magellan et tectonique des Andes Australes.Mem. doc. Geosci. Rennes 85, 1–332 ISBN2-905532-84-X, ISSSN1240-1498. Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., Gutiérrez, P.A., 1997a. Neogene tectonics within the Magellan basin (Patagonia). VI Simposio Bolivariano, Exploración petrolera en las cuencas subandinas, Cartagena, Memorias. Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Bogotá, Tomo I, pp. 1–14. Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., 1997b. Magellan Strait: Part of a Neogene rift system. Geology 25, 703–706. Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., 2000. Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes. Tectonophysics 316, 91–119. Eagles, G., Livermore, R.A., Fairhead, J.D., Morris, P., 2005. Tectonic evolution of the west Scotia Sea. J. Geophys. Res. 110, B02401. doi:10.1029/2004JB003154. Faccenna, C., Speranza, F., D'Ajello Caracciolo, F., Mattei, M., Oggiano, G., 2002. Extensional tectonics on Sardinia (Italy): insights into the arc-back-arc transitional regime. Tectonophysics 356, 213–232. Fisher, R.A., 1953. Dispersion on a sphere. Proc. R. Soc. Lond. 217, 295–305. Ghiglione, M.C., 2002. Diques clásticos asociados a deformación transcurrente en depósitos sinorogénicos del Mioceno inferior de la Cuenca Austral. Rev. Asoc. Geol. Argent. 57, 103–118. Ghiglione, M.C., 2003. Estructura y evolución tectónica del Cretácico-Terciario de la costa Atlántica de Tierra del Fuego [Ph.D. thesis]: Buenos Aires, Universidad de Buenos Aires, pp. 150. Ghiglione,M.C., Cristallini, E.O., 2007. Have the southernmost Andes been curved since Late Cretaceous time? An analog test for the Patagonian Orocline. Geology 35 (1), 13–16. Ghiglione, M.C., Ramos, V.A., 2005. Progression of deformation in the southernmost Andes. Tectonophysics 405, 25–46. Ghiglione, M.C., Ramos, V.A., Cristallini, E.O., 2002. Estructura y estratos de crecimiento en la faja plegada y corrida de los Andes fueguinos. Rev. Geol. Chile 29 (1), 17–41. Ghiglione, M.C., Yagupsky, D., Ghidella, M., Ramos, V.A., 2008. Continental stretching preceding the opening of the Drake Passage: evidence from Tierra del Fuego. Geology 36 (8), 643–646. Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A Geologic Time Scale 2004. Cambridge University Press. pp. 589. Grunow, A.M., 1993. New paleomagnetic data from the Antarctic Peninsula and their tectonic implications. J. Geophys. Res. 98 (13), 815–13,833. Hrouda, F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int. 118, 604–612. Hrouda, F., Janàk, F., 1976. The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34, 135–148. Iglesia Llanos, M.P., Lanza, R., Riccardi, A.C., Geuna, S., Laurenzi, M.A., Ruffini, R., 2003. Palaeomagnetic study of the El Quemado complex and Marifil formation, Patagonian Jurassic igneous province, Argentina. Geophys. J. Int. 154, 599–617. Jelinek, V., 1977. The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika, Brno. pp. 88. Jelinek, V., 1978. Statistical processing of magnetic susceptibility on groups of specimens. Stud. Geophys. Geod. 22, 50–62. Jelinek, V., 1981. Characterization of the magnetic fabrics of rocks. Tectonophysics 79, 63–67. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718. Kissel, C., Speranza, F., Milicevic, V., 1995. Paleomagnetism of external southern and central Dinarides and northern Albanides: implications for the Cenozoic activity of the Scutari-Pec transverse zone. J. Geophys. Res. 100, 14999–5007. doi:10.1016/ S0040-1951(02)00638-8. Kley, J., 1999. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. S. Am. Earth Sci. 12, 221–235. Kohn, M.J., Spear, F.S., Harrison, T.M., Dalziel, I.D.W., 1995. 40Ar/39Ar geochronology and P-T-t paths from the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. J. Metam. Geol. 13, 251–270. Kraemer, P.E., 2003. Orogenic shortening and the origin of the Patagonian orocline (56 degrees S. Lat). J. South Am. Earth Sci 15, 731–748. Lagabrielle, Y., Goddéris, Y., Donnadieu, Y., Malavieille, J., Suarez, M., 2009. The tectonic history of Drake Passage and its possible impacts on global climate. Earth Planet. Sci. Lett. 279 (3–4), 197–211. Lawver, L.A., Gahagan, L.M., 2003. Evolution of Cenozoic seaways in the circum- Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–38. Livermore, R., Nankivell, A., Eagles, G., Morris, P., 2005. Paleogene opening of Drake Passage. Earth Planet. Sci. Lett. 236, 459–470. Lodolo, E., Coren, F., Schreider, A.A., Ceccone, G., 1997. Geophysical evidence of a relict oceanic crust in the southwestern Scotia Sea. Mar. Geophys. Res. 19, 439–450. Lodolo, E., Menichetti, M., Bartole, R., Ben-Avraham, Z., Tassone, A., Lippai, H., 2003. Magallanes–Fagnano continental transform fault (Tierra del Fuego, southernmost South America). Tectonics 22 (6), 1076. doi:10.1029/2003TC001500. Lodolo, E., Donda, F., Tassone, A., 2006. Western Scotia Sea margins: improved constraints on the opening of the Drake Passage. J. Gephys. Res. 111, B06101. doi:10.1029/2006JB004361. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett. 17 (2), 159–162. Maffione, M., Speranza, F., Faccenna, C., Cascella, A., Vignaroli, G., Sagnotti, L., 2008. A synchronous Alpine and Corsica–Sardinia rotation. J. Geophys. Res. 113, B03104. doi:10.1029/2007JB005214. Maffione, M., Speranza, F., Faccenna, C., 2009. Bending of the Bolivian orocline and growth of the Central Andean plateau: paleomagnetic and structural constraints from the Eastern Cordillera (22–24°S, NW Argentina). Tectonics 28, TC4006. doi:10.1029/2008TC002402. Malumián, N., Olivero, E.B., 2006. El Grupo Cabo Domingo, Tierra del Fuego: bioestratigrafía, paleoambientes y acontecimientos del Eoceno–Mioceno marino. Rev. Asoc. Geol. Argent. 61 (2), 139–160. Marshak, S., 1988. Kinematics of orocline and arc formation in thin-skinned orogens. Tectonics 7 (1), 73–86. McFadden, P.L., 1990.Anewfold test for paleomagnetic studies.Geophys. J. Int. 103, 163–169. Olivero, E.B., Malumián, N., 1999. Eocene stratigraphy of southeastern Tierra del Fuego island, Argentina. AAPG Bull. 83 (2), 295–313. Olivero, E.B., Malumián, N., 2008. Mesozoic–Cenozoic stratigraphy of the Fuegian Andes, Argentina. Geologica Acta 6 (1), 5–18. Olivero, E.B., Martinioni, D.R., 2001. A review of the geology of the Argentinian Fuegian Andes. J. South Am. Earth Sci. 14, 175–188. Olivero, E.B., Malumián, N., Palamarczuk, S., Scasso, R.A., 2001. El Cretácico superior- Paleogeno del área del Río Bueno, costa atlántica de la Isla Grande de Tierra del Fuego. Rev. Asoc. Geol. Argen. 57 (3), 199–218. Olivero, E.B., Malumián, N., Palamarczuk, S., 2003. Estratigrafía del Cretácico superior- Paleoceno del área de bahía Thetis, Andes Fueguinos. Argentina: acontecimientos tectónicos y paleobiológicos. Rev. Geol. Chile 30, 245–263. Pelayo, A.M., Wiens, D.A., 1989. Seismotectonics and relative plate motion in the Scotia Sea region. J. Geophys. Res. 94, 7293–7320. Ramos, V.A., Aleman, A., 2000. Tectonic evolution of the Andes. In: Cordani, U., et al. (Ed.), Tectonic evolution of South America: Rio de Janeiro, Brazil. : Proceedings of the 31 ° International Geological Congress. Rio de Janeiro, Brazil, In-folio Producao Editorial, pp. 635–685. Rapalini, A.E., 2007. A paleomagnetic analysis of the Patagonian orocline. Geol. Acta 5 (4), 287–294. Rapalini, A.E., Hervé, F., Ramos, V.A., Singer, S., 2001. Paleomagnetic evidence of a very large counterclockwise rotation of the Madre de Dios archipelago, southern Chile. Earth Planet. Sci. Lett. 184 (2), 471–487. Rapalini, A.E., Calderón, M., Hervé, F., Cordani, U., Singer, S., 2004. First Paleomagnetic Results on the Sarmiento Ophiolite, Southern Chile: implications for the Patagonian Orocline. Geosur 2004, Internat. Symp. on the Geology and Geophysics of the Southernmost Andes, the Scotia Arc and the Antarctic Peninsula, Buenos Aires, Bolletino de Geofisica Teórica ed Applicata, vol. 45, pp. 246–249. Rapalini, A.E., Lippai, H., Tassone, A., Cerredo, M.E., 2005. An AMS and paleomagnetic study across the Andes in Tierra del Fuego. 6th International Symposium on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts, pp. 596–599. Rochette, P., 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J. Struct. Geol. 9, 1015–1020. Roperch, P., Chauvin, A, Calza, F., Palacios, C., Parraguez, G., Pinto, L., Goguitchaivilli, A., 1997. Paleomagnetismo de las rocas volcánicas del Jurásico tardío al Terciario temprano de la región de Aysén (Coyhaique-Cochrane). 8 ° Congreso Geológico Chileno, vol. 1. Universidad Católica del Norte, Actas, Antofagasta, pp. 236–240. Rossello, E.A., 2005. Kinematics of the Andean sinistral wrenching along the Fagnano– Magallanes Fault Zone (Argentina–Chile Fueguian Foothills). 6th International Symposium on Andean Geodynamics. Barcelona, Actas, pp. 623–626. Rossello, E.A., Haring, C.E., Nevistic, A.V., Cobbold, P.R., 2004a. Wrenching along the Fagnano–Magallanes fault zone, northern foothills of the Fueguian Cordillera (Argentina–Chile): preliminary evaluation of displacements. 32 ° International Geological Congress, Firenze. CD-Room. Rossello, E.A., Ottone, E.G., Haring, C.E., Nevistic, V.A., 2004b. Significado tectónico y paleoambiental de los niveles carbonosos paleógenos de Estancia La Correntina, Andes Fueguinos, Argentina. Asoc. Geol. Argentina, Revista, Geología de la Patagonia (Buenos Aires), vol. 59 (4), pp. 778–784. Rossello, E.A., Haring, C.E., Cardinali, G., Suárez, F., Laffitte, G.A., Nevistic, A.V., 2008. Hydrocarbons and petroleum geology of Tierra del Fuego, Argentina. In: Menichetti, M., Tassone, A. (Eds.), Tierra del Fuego Geology and Geophysics: New advances and perspective (Geosur 2004), vol. 6 (1). Geologica Acta, Barcelona, España, pp. 69–83. Sagnotti, L., Speranza, F., Winkler, A., Mattei, M., Funiciello, R., 1998. Magnetic fabric of clay sediments from the external northern Apennines (Italy). Phys. Earth Planet. Inter. 105, 73–93. Smalley Jr, R., Kendrick, E., Bevis, M.G., Dalziel, I.W.D., Taylor, F., Lauria, E., Barriga, R., Casassa, G., Olivero, E.B., Piana, E., 2003. Geodetic determination of relative plate motion and crustal deformation across the Scotia–South America plate boundary in eastern Tierra del Fuego. Geochem. Geophys. Geosystems 4, 1–19. Sonder, L.J., Jones, C.H., Salyards, S.L., Murphy, K.M., 1994. Vertical-axis rotations in the Las Vegas Valley Shear Zone, southern Nevada: Paleomagnetic constraints on kinematics and dynamics of block rotations. Tectonics 13 (4), 769–788. Speranza, F., Mattei, L., Sagnotti, M., 1997. Tectonics of the Umbria-Marche-Romagna Arc (central northern Apennines, Italy): new paleomagnetic constraints. J. Geophys. Res. 102 (B2), 3153–3166. Speranza, F., Maniscalco, R., Mattei, M., Di Stefano, A., Butler, R.W.H., Funiciello, R., 1999. Timing and magnitude of rotations in the frontal thrust systems of southwestern Sicily. Tectonics 18 (6), 1178–1197. Speranza, F., Maniscalco, R., Grasso, M., 2003. Pattern of orogenic rotations in centraleastern Sicily: implications for the timing of spreading in the Tyrrhenian Sea. J. Geol. Soc. Lond. 160, 183–195. Torres-Carbonell, P.J., Olivero, E.B., Dimieri, L.V., 2008a. Control en la magnitud de desplazamiento de rumbo del Sistema Transformante Fagnano, Tierra del Fuego, Argentina. Rev. Geol. Chile 35, 63–79. Torres-Carbonell, P.J., Olivero, E.B., Dimieri, L.V., 2008b. Structure and evolution of the Fuegian Andes foreland thrust–fold belt, Tierra del Fuego, Argentina: Paleogeographic implications. J. South Am. Earth Sci. 25, 417–439. Winslow, M.A., 1982. The structural evolution of the Magallanes Basin and Neotectonics in the Southernmost Andes. In: Cradock, C. (Ed.), Antarctic Geoscience. University of Wisconsin, Madison, pp. 143–154. Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693. Zijderveld, J.D.A., 1967. A.C. demagnetization of rocks: analysis of results. In: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods in Paleomagnetism. Elsevier, New York, pp. 254–286.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMaffione, M.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorFaccenna, C.en
dc.contributor.authorRossello, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università di Roma Tre, Rome, Italyen
dc.contributor.departmentCONICET, Departamento de Ciencias Geológicas, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentinaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptCONICET, Departamento de Ciencias Geológicas, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
ARTICLE.pdf2.18 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

28
checked on Jan 14, 2021

Page view(s) 50

199
checked on Apr 17, 2024

Download(s)

27
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric