Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5996
DC FieldValueLanguage
dc.contributor.authorallApplegarth, L. J.; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.authorallPinkerton, H.; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.authorallJames, M. R.; Lancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2010-05-13T13:14:25Zen
dc.date.available2010-05-13T13:14:25Zen
dc.date.issued2010-01en
dc.identifier.urihttp://hdl.handle.net/2122/5996en
dc.description.abstractLong-lived basaltic eruptions often produce structurally complex, compound `a`a flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`a clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a stalled flow front being reactivated. This will therefore enhance our ability to track and assess hazard posed by lava flow emplacement.en
dc.description.sponsorshipWe thank INGV Catania for providing the images used in our study. The work was funded by Natural Environment Research Council studentship NER/S/A2005/ 13681 and grant NE/F018010/1. MRJ was funded by the Royal Society.en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Volcanologyen
dc.relation.ispartofseries6/72(2010)en
dc.subjectChannel-fed lavaen
dc.subjectEffusion rateen
dc.subjectSqueeze-upen
dc.subjectEtnaen
dc.subjectTumulien
dc.subjectbasaltic aaen
dc.titleMorphological complexities and hazards during the emplacement of channel-fed `a`a lava flow fields: A study of the 2001 lower flow field on Etnaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber641-656en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1007/s00445-010-0351-1en
dc.relation.referencesAnderson SW, Fink JH (1990) The development and distribution of surface textures at the Mount St-Helens dome. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp 25–46 Anderson SW, Fink JH (1992) Crease structures—indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bull 104:615–625 Applegarth LJ (2008) Complexity in lava flows: surface features and structural morphology, PhD thesis, Lancaster University Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland S (2006) The changing morphology of an open lava channel on Mt. Etna. Bull Volcanol 68:497–515 Behncke B, Neri M (2003) The July-August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476 Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp 88–126 Borgia A, Linneman S, Spencer D, Morales LD, Andre JB (1983) Dynamics of lava flow fronts, Arenal-Volcano, Costa Rica. J Volcanol Geotherm Res 19:303–329 Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991-1993 eruption of Mount Etna. J Geophys Res 103:27291–27301 Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280 Calvari S, INGV Catania staff (2001) Multidisciplinary approach yields insight into Mt. Etna 2001 eruption. EOS Trans AGU 82 (52):653–656 Calvari S, Pinkerton H (2004) Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J Volcanol Geotherm Res 132:225–239. doi:10.1016/ S0377-0273(03)00347-0 Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107– 123. doi:10.1016/S0377-0273(02)00308-6 Cashman KV, Blundy J (2000) Degassing and crystallisation of ascending andesite and dacite. Phil Trans Roy Soc London 358:1487–1513 Chester DK, Duncan AM, Guest JE, Kilburn CRJ (1985) Mount Etna: the anatomy of a volcano. Chapman and Hall, London Christiansen R, Lipman PW (1966) Emplacement and thermal history of a rhyolite lava flow near Fortymile Canyon, southern Nevada. Geol Soc Am Bull 77:671–684 Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112:F02029. doi:10.1029/2006JF000598 Crisci G, Rongo R, Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267 Crisp J, Baloga S (1994) Influence of crystallisation and entrainment of cooler material on the emplacement of basaltic aa lava flows. J Geophys Res 99:11819–11831 Dragoni M, Tallarico A (1996) A model for the opening of ephemeral vents in a stationary lava flow. J Volcanol Geotherm Res 74:39– 47 Duncan AM, Guest JE, Stofan ER, Anderson SW, Pinkerton H, Calvari S (2004) Development of tumuli in the medial portion of the 1983 `a`a flow-field, Mount Etna, Sicily. J Volcanol Geotherm Res 132:173–187 Favalli M, Pareschi M, Neri A, Isola I (2005) Forecasting lava flow paths by a stochastic approach. Geophys Res Lett 32:L03305. doi:10.1029/2004GL021718 Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010) The distal segment of Etna’s 2001 basaltic lava channel. Bull Volcanol 72:119–127. doi:10.1007/s00445-009-0300-z Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096 Guest JE, Stofan ER (2005) The significance of slab-crusted lava flows for understanding controls on flow emplacement at Mount Etna, Sicily. J Volcanol Geotherm Res 142:193–205 Guest JE, Underwood JR, Greeley R (1980) Role of lava tubes in flows from the observatory-vent, 1971 eruption on Mount Etna. Geol Mag 117:601–606 Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527– 540 Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermorheological model for lava flowing in a channel. Bull Volcanol 63:20–44 Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22 Bull Volcanol Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of a lava channel. Bull Volcanol 71:459–474. doi:10.1007/s00445-008-0238-6 Hidaka M, Goto A, Umino S, Fujita E (2005) VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem Geophys Geosys 6:Q07008. doi:10.1029/ 2004GC000869 Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows- observations and measurements of active lava flows on Kilauea Volcano, Hawai’i. Geol Soc Am Bull 106:351–370 Istituto Nazionale di Geofisica e Vulcanologia (Catania) syn-eruption reports: http://www.ct.ingv.it/Etna2001/Main.htm James MR, Pinkerton H, Robson S (2007) Image-based measurement of flux variation in distal regions of active lava flows. Geochem Geophys Geosys 8:Q03006. doi:10.1029/2006GC001448 James MR, Pinkerton H, Applegarth LJ (2009) Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys Res Lett 36:L22305. doi:10.1029/2009GL040701 Jurado-Chichay Z, Rowland SK (1995) Channel overflows of the pohue bay flow, Mauna-Loa, Hawai’i- examples of the contrast between surface and interior lava. Bull Volcanol 57:117–126 Kauahikaua J, Sherrod DR, Cashman KV, Heliker CC, Hon K, Mattox TN, Johnson JA (2003) Hawai’ian lava-flow dynamics during the Pu`u-`O`o-Kupaianaha eruption: a tale of two decades. US Geol Surv 1676:63–87 Keszthelyi L (1995) A preliminary thermal budget for lava tubes on the Earth and planets. J Geophys Res 100:20411–20420 Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res 103:27447–27464 Kilburn CRJ (1981) Pahoehoe and `a`a-lavas- a discussion and continuation of the model of Peterson and Tilling. J Volcanol Geotherm Res 11:373–382 Kilburn C (1990) Surfaces of `a`a flow-fields on Mount Etna, Sicilymorphology, rheology, crystallisation and scaling phenomena. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp 129–156 Kilburn CRJ, Lopes RMC (1988) The growth of `a`a lava flow-fields on Mount Etna, Sicily. J Geophys Res 93:14759–14772 Kilburn CRJ, Lopes RMC (1991) General patterns of flow field growth- `a`a and blocky lavas. J Geophys Res 96:19721–19732 Krauskopf KB (1948) Lava movement at Parícutin volcano, Mexico. Geol Soc Am Bull 59:1267–1283 Lejeune AM, Richet P (1995) Rheology of crystal-bearing silicate melts- an experimental-study at high viscosities. J Geophys Res 100:4215–4229 Lipman PW, Banks NG (1987) `A`a flow dynamics, Mauna Loa 1984. US Geol Surv 1350:1527–1568 Luhr JF, Simkin T (1993) Parícutin, the volcano born in a Mexican cornfield. Geoscience, Arizona Macdonald GA (1972) Volcanoes. Prentice-Hall, New Jersey Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98 Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana flow-field, Kilauea Volcano, Haiwai’i. Bull Volcanol 55:407–413 Mattsson HB, Vuorinen J (2008) Emplacement and inflation of natrocarbonatitic lava flows during the March–April 2006 eruption of Oldinyo Lengai, Tanzania. Bull Volcanol 71:301– 311. doi:10.1007/s00445-008-0224-z Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32:L04305. doi:10.1029/2004GL021815 Nichols RN (1939) Squeeze-ups. J Geol 47:421–425 Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to `a`a, Kilauea volcano, Hawai’i- field observations and key factors. J Volcanol Geotherm Res 7:271–293 Pinkerton H, Sparks RSJ (1976) 1975 sub-terminal lavas, Mount Etnacase history of formation of a compound lava field. J Volcanol Geotherm Res 1:167–182 Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53:47–66 Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120 Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76:1– 17 Polacci M, Papale P (1999) The development of compound lava fields at Mount Etna. Phys Chem Earth A—Solid Earth and Geodesy 24:949–952 Rossi MJ, Gudmundsson A (1996) The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J Volcanol Geotherm Res 72:291–308 Rowland SK, Walker GPL (1987) Toothpaste lava: characteristics and origin of a lava structural type transitional between pahoehoe and `a`a. Bull Volcanol 49:631–641 Rowland SK, Walker GPL (1990) Pahoehoe and `a`a in Hawai’i: volumetric flow rate controls the lava structure. Bull Volcanol 52:615–628. doi:10.1007/BF00301212 Sheth HC, Ray JS, Bhutani R, Kumar A, Smitha RS (2009) Volcanology and eruptive styles of Barren Island: an active mafic stratovolcano in the Andaman Sea, NE Indian Ocean. Bull Volcanol 71:1021–1039. doi:10.1007/s00445-009-0280-z Sparks RSJ, Pinkerton H (1978) Effect of degassing on rheology of basaltic lava. Nature 276:385–386 Thordarson T, Self S (1998) The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103:27411–27445 Vicari A, Herault A, Del Negro C, Coltelli M, Marsella M, Proietti C (2007) Modelling of the 2001 lava flow at Etna volcano by a Cellular Automata approach. Environ Model Softw 22:1465– 1471 Walker GPL (1973) Lengths of lava flows. Phil Trans Roy Soc London A—Math Phys and Eng Sci 274:107–118 Walker GPL (1991) Structure, and origin by injection of lava under surface crust, of tumuli, lava rises, lava-rise pits, and lavainflation clefts in Hawai’i. Bull Volcanol 53:546–558 Wright R, Garbeil H, Harris AJL (2008) Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: a method for near-real-time volcanic hazard assessment. Geophys Res Lett 35:L19307. doi:10.1029/2008GL035228en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorApplegarth, L. J.en
dc.contributor.authorPinkerton, H.en
dc.contributor.authorJames, M. R.en
dc.contributor.authorCalvari, S.en
dc.contributor.departmentLancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.departmentLancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.departmentLancaster Environment Centre, Lancaster University, Bailrigg, Lancasteen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLancaster Environment Centre, Lancaster University, Bailrigg, Lancaste-
crisitem.author.deptEnvironmental Science Department, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster LA1 4YQ, UK-
crisitem.author.deptEnvironmental Science Department, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, United Kingdom-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Applegarth et al 2010-in print.pdfmain article1.08 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

20
checked on Feb 10, 2021

Page view(s)

118
checked on Mar 27, 2024

Download(s)

23
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric