Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5955
DC FieldValueLanguage
dc.contributor.authorallPesci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallLoddo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCasula, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallZampa, F.; SINECO SPAen
dc.contributor.authorallTeza, G.; Università degli Studi di Padova (Dipartimento di Geoscienze)en
dc.date.accessioned2010-03-09T11:47:56Zen
dc.date.available2010-03-09T11:47:56Zen
dc.date.issued2010-03-09en
dc.identifier.urihttp://hdl.handle.net/2122/5955en
dc.description.abstractThe terrestrial laser scanner is an efficient topographical instrumentation used to acquire a redundant number of points distributed over a physical surface. The goal of laser scanning is the definition of very accurate models of the studied areas. In this way, deformations or changes can be monitored by means of repeated surveys in different epochs [Pesci et al., 2005; 2007]. The laser signal is characterized by highly collimated, monochromatic, and coherent radiation that is well suitable for very short impulse generation in the nanosecond scale. The operating methodology of a time-of-flight laser scanner is similar to a laser range-finder, measuring the time it takes a laser pulse to travel from a transmitter to the surface surveyed, and back to a detector device. The range d is computed using the relation d = ct / 2, where t is the time of flight and c is the speed of light. The advantage of this instruments is the laser beam deflection over a very accurate angular grid, that can be obtained by oscillating and rotating mirrors, thus providing a wide coverage area between adjacent points. Each point is collected into a local reference system consisting of the origin at the instrument sensor, well-known angular parameters, and very accurate measurements of range. Together with point coordinates (x, y, z) , radiometric values related to the surveyed object’s reflectivity can be calculated from returned signal energy. The maximum measurable range depends on the illuminated material roughness and color, and the laser wavelength [Fidera et al. 2004, Pesci and Teza, 2008]. Divergence values for new generation long-range scanners are extremely reduced, illuminating very small surface elements for each shot. The spot dimension increases linearly with the distance, and is always greater than the lower limit of the instantaneous field of view (IFOV) due to physical diffraction. Effective laser scanner characteristics are defined by a set of parameters, including: range resolution (depending on telemeter efficiency), single point measurement accuracy (depending on the internal electronic device, signal-to-noise ratio and critical time needed for pulse recognition), beam divergence (which defines the IFOV, depending on laser wavelength), and minimum angular step (depending on the internal mirrors calibrated system) [Wehr and Lohr 1999]. Overlap is the laser scanning strategy that can reduce errors, because redundant points are acquired belonging to the same illuminated area. A common overlap is obtained by fixing the ratio between spot dimension (the area illuminated by a single pulse with a given divergence) and angular step so that a given point is measured 10 times. For instance, if the divergence is 3 mrad and angular variation about 0.3 mrad, at 100 m distance, an element included in a 3 cm area is observed 10 times. The final result of a laser scanner application is a very dense point cloud, with radiometric reflectivity data for each point.en
dc.description.sponsorshipINGVen
dc.language.isoEnglishen
dc.relation.ispartofseries2010en
dc.relation.ispartofseries133en
dc.subjectMOBILE LASER SCANNINGen
dc.subjectLYNX Mobile Mapperen
dc.subjecttopographical instrumentationen
dc.subjectearthquake damaged areaen
dc.titleEXPERIENCE IN MOBILE LASER SCANNING BY MEANS OF LYNX SYSTEM IN L’AQUILA CITYen
dc.typereporten
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://portale.ingv.it/produzione-scientifica/rapporti-tecnici-ingv/copy_of_numeri-pubblicati-2010/2010-03-09.3028380825en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniquesen
dc.relation.referencesAnzidei, M., Boschi, E., , Cannelli, V., Devoti, R., Esposito, A., Galvani, A., Melini, D. Pietrantonio, G., Riguzzi, F., Sepe V. and Serpelloni, E. (2009): Coseismic Deformation Of The Destructive April 6, 2009 L’aquila Earthquake (Central Italy) From Gps Data. Geophysics Research Letters, 36, L17307, Doi:10.1029/2009gl039145. Fidera, A., Chapman, M.A. And Hong, J. (2004): Terrestrial Lidar for industrial metrology applications: Modeling, enhancement and reconstruction. In XXth ISPRS Congress, 12–23 July 2004, Istanbul, Turkey. Zampa, F., Conforti, D. (2009): Mapping with Mobile Lidar, GIM International 23(4), 35-37. Galadini, F. and Galli, P. (2000). Active Tectonics in the Central Apennines (Italy) – Input Data for Seismic Hazard Assessment, 22(3), 225-270. Pesci, A., Loddo, F., Conforti, D. (2007): The first terrestrial laser scanner survey OVER VESUVIUS: the high resolution model of VOLCANO crater (Napoli, Italy). International Journal of Remote Sensing, 28, 1, 203-219. Pesci, A., Fabris, M., Conforti, D., Loddo, F., Baldi, P., Anzidei, M. (2007): Integration of TLS and aerial digital photogrammetry for Vesuvio volcano modelling. Journal of Volcanology and Geothermal Research, 162, 123-138. Pesci, A. and Teza, G. (2008): Effects of surface irregularities on intensity data from laser scanning: an experimental approach. Annals of Geophysics, 51, 5-6, 839-848. WEHR, A. and LOHR, U. (1999): Airborne laser scanning - an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68–82.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.fulltextopenen
dc.contributor.authorPesci, A.en
dc.contributor.authorLoddo, F.en
dc.contributor.authorCasula, G.en
dc.contributor.authorZampa, F.en
dc.contributor.authorTeza, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentSINECO SPAen
dc.contributor.departmentUniversità degli Studi di Padova (Dipartimento di Geoscienze)en
item.openairetypereport-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_93fc-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptSINECO SPA-
crisitem.author.deptDipartimento di Geoscienze - Univ. di Padova-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.orcid0000-0002-1153-1021-
crisitem.author.orcid0000-0001-7934-2019-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Reports
Files in This Item:
File Description SizeFormat
rapporto133.pdfreport791.31 kBAdobe PDFView/Open
Show simple item record

Page view(s) 20

249
checked on Mar 27, 2024

Download(s) 50

203
checked on Mar 27, 2024

Google ScholarTM

Check