Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5942
DC FieldValueLanguage
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCaburlotto, A.; Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italyen
dc.date.accessioned2010-03-02T15:10:13Zen
dc.date.available2010-03-02T15:10:13Zen
dc.date.issued2010-01en
dc.identifier.urihttp://hdl.handle.net/2122/5942en
dc.description.abstractPaleomagnetic and rock magnetic investigation was performed on the 35-m long MD03-2595 CADO (Coring Adélie Diatom Oozes) piston core recovered on the continental rise of the Wilkes Land Basin (East Antarctica). Analysis of the characteristic remanent magnetization (ChRM) inclination record indicates a normal magnetic polarity for the uppermost 34m of the sequence and a distinctive abrupt polarity change at the bottom of the core. This polarity change, which spans a 27 cm thick stratigraphic interval, represents a detailed record of the Matuyama–Brunhes (M–B) transition and it is preceded by a sharp oscillation in paleomagnetic directions that may correlate to the M–B precursor event. Paleomagnetic measurements enable reconstruction of geomagnetic relative paleointensity (RPI) variations, and a highresolution age model was established by correlating the CADO RPI curve to the available global reference RPI stack, indicating that the studied sequence reaches back to ca. 800 ka with an average sedimentation rate of 4.4 cm/ka. Orbital periodicities (100 ka and 41 ka) were found in the ChRM inclination record, and a significant coherence of ChRM inclination and RPI record around 100 ka suggests that long-term geomagnetic secular variation in inclination is controlled by changes in the relative strength of the geocentric axial dipole and persistent non-dipole components. Moreover, even if the relatively homogeneous rock magnetic parameters and lithofacies throughout the recovered sequence indicates a substantial stability of the East Antarctic Ice Sheet during the middle and late Pleistocene, influence of the 100 ka and 41 ka orbital periodicities has been detected in some rock magnetic parameters, indicating subtle variations in the concentration and grain-size of the magnetic minerals linked to orbital forcing of the global climate.en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V.en
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.relation.ispartofseries/179 (2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5555en
dc.subjectPaleomagnetismen
dc.subjectRelative paleointensityen
dc.subjectBrunhes Chronen
dc.subjectMatuyama–Brunhes precursoren
dc.subjectAntarcticaen
dc.titleRelative geomagnetic paleointensity of the Brunhes Chron and the Matuyama–Brunhes precursor as recorded in sediment core from Wilkes Land Basin (Antarctica)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber72-86en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doi10.1016/j.pepi.2009.12.002en
dc.relation.referencesArason, P., Levi, S., 1990. Compaction and inclination shallowing in deep-sea sediments from the Pacific Ocean. J. Geophys. Res. 95, 4501–4510. Aurnou, J.M., Andreadis, S., Zhu, L., Olson, P.L., 2003. Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134. Brachfeld, S.A., Acton, G.D., Guyodo, Y., Banerjee, S.K., 2000. High-resolution paleomagnetic records from Holocene sediments from the Palmer Deep, western Antarctic Peninsula. Earth Planet. Sci. Lett. 181, 421–441. Brachfeld, S.A., Domack, E.W., Kissel, C., Laj, C., Leventer, A., Ishman, S.E., Gilbert, R., Camerlenghi, A., Eglinton, L.B., 2003. Holocene history of the Larsen Ice shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752. Brancolini, G., Harris, P.T., 2000. Post Cruise Report AGSO Survey 217: Joint Italian/ Australian Marine Geoscienze Expedition Aboard the R.V. Tangaroa to the Geotge Vth Land Region of East Antartica during February–March, 2000. Australian National Antarctic Research Expeditions Project No. 1044, Wilkes Land Glacial History (WEGA), AGSO Record. Brown, L.L., Singer, B.S., Pickens, J.C., Jicha, B.R., 2004. Paleomagnetic directions and 40Ar//39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: Lava record of a Matuyama–Brunhes precursor? J. Geophys. Res. 109, B12101, doi:10.1029/2004JB003007. Busetti, M., Caburlotto, A., Armand, L., Damiani, D., Giorgetti, G., Lucchi, R.G., Quilty, P.G., Villa, G., 2003. Plio-Quaternary sedimentation on the Wilkes land continental rise: preliminary results. Deep-Sea Res. II 50, 1529–1562. Caburlotto, A., Macrì, P., Damiani, D., Giorgetti, G., Busetti, M., Villa, G., Lucchi, R.G., 2003. Piston cores from the Wilkes Land Rise: data and considerations. Terra Antartica Rep. 9, 63–68. Channell, J.E.T., Curtis, J.H., Flower, B.P., 2004. The Matuyama–Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys. J. Int. 158, 489–505. Channell, J.E.T., 2006. Late Brunhes polarity excursions (Mono Lake, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth Planet. Sci. Lett. 244, 378–393. Channell, J.E.T., Xuan, C., Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283, 14–23. Clement, B.M., 2004. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428, 637–640. Coe, R.S., Singer, B.S., Pringle, M.S., Zhao, X., 2004. Matuyama–Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications. Earth Planet. Sci. Lett. 222, 667–684. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites. Grain-size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267. Deamer, G.A., Kodama, K.P., 1990. Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. J. Geophys. Res. 95 (B4), 4511–4529. deMenocal, P.B., Ruddiman, W.F., Kent, D.V., 1990. Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes–Matuyama reversal and oxygen isotopic Stage 19.1. Earth Planet. Sci. Lett. 99, 1–13. Dinarès-Turell, J., Sagnotti, L., Roberts, A.P., 2002. Relative geomagnetic paleointensity from the Jaramillo Subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth Planet. Sci. Lett. 194, 327–341. Escutia, C., Eittreim, S.L., Cooper, A.K., 1997. Cenozoic sedimentation on the Wilkes Land Continental Rise, Antarctica. In: Ricci, C.A. (Ed.), Proceedings of the VII International Symposium on Antarctic Earth Sciences. Terra Antarctica Publication, Siena, pp. 791–795. Fisher, R.A., 1953. Dispersion on a sphere. Proc. R. Soc. Lond. 217, 295–305. Glatzmaier, G.A., Roberts, P.H., 1995a. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Int. 91, 63–75. Glatzmaier, G.A., Roberts, P.H., 1995b.Athree-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209. Guillou, H., Singer, B., Laj, C., Kissel, C., Scaillet, S., Jicha, B.R., 2004. On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett. 227, 331–343. Guyodo, Y., Valet, J.-P., 1999. Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399, 249–252. Guyodo, Y., Acton, G.D., Brachfeld, S., Channell, J.E.T., 2001. A sedimentary paleomagnetic record of the Matuyama Chron from the Western Antarctic Margin (ODP Site 1101). Earth Planet. Sci. Lett. 191, 61–74. Guyodo, Y., Channell, J.E.T., Thomas Ray, G., 2002. Deconvolution of u-channel paleomagnetic data near geomagnetic reversals and short events. Geophys. Res. Lett. 29, 1845, doi:10.1029/2002GL014927. Hartl, P., Tauxe, L., 1996. A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135. Hyodo, M., Biswas, D.K., Noda, T., Tomioka, N., Mishima, T., Itota, C., Sato, H., 2006. Millennial- to submillennial-scale features of the Matuyama–Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan. J. Geophys. Res. 111, B02103, doi:10.1029/2004JB003584. Kent, D.V., Schneider, D.A., 1995. Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval. Earth Planet. Sci. Lett. 129, 135–144. King, J.W., Banerjee, S.K., Marvin, J., 1983.Anewrock-magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years. J. Geophys. Res. 88 (B7), 5911–5921. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astron. Soc. 62, 699–718. Kuang, W., Bloxham, J., 1997. An Earth-like numerical dynamo model. Nature 389, 371–374. Langereis, C.G., Dekkers, M.J., de Lange, G.J., Paterne, M.E., van Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129, 75–94. Lawrence, K.P., Tauxe, L., Staudigel, H., Constable, C.G., Koppers, A., McIntosh, W., Johnson, C.L., 2009. Paleomagnetic field properties at high southern latitude. Geochem. Geophys. Geosyst. 10, Q01005, doi:10.1029/2008GC002072. Lund, S.P., Keigwin, L., 1994. Measurement of the degree of smoothing in sediment paleomagnetic secular variation records: an example from Late Quaternary deep-sea sediments of the Bermuda Rise, western North Atlantic Ocean. Earth Planet. Sci. Lett. 122, 317–330. Lund, S.P., Acton, G., Clement, B., Hastedt, M., Okada, M.,Williams, R., 1998. Geomagnetic field excursions occurred often during the last million years. EOS, Trans. Am. Geophys. Un. 79, 178–179. Macrì, P., Sagnotti, L., Dinares-Turell, J., Caburlotto, A., 2005. A composite record of Late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica). Phys. Earth Planet. Int. 151, 223–242. Macrì, P., Sagnotti, L., Lucchi, R.G., 2006. A stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula. Earth Planet. Sci. Lett. 252, 162–179. Meynadier, L., Valet, J.-P., Weeks, R., Shackleton, N.J., Hagee, V.L., 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57. Mitra, R., Tauxe, L., 2009. Full vector model for magnetization in sediments. Earth Planet. Sci. Lett. 286, 535–545. Nowaczyk, N.R., Antonow, M., 1997. High resolution magnetostratigraphy of four sediment cores from the Greenland Sea. I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events. Geophys. J. Int. 131, 310–324. Nowaczyk, N., Frederichs, T., 1999. Geomagnetic events and relative paleointensity variations during the last 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea, indication for a strongly variable geomagnetic field. Int. J. Earth Sci. 88, 116–131. Oda, H., Shibuya, H., 1996. Deconvolution of long-core paleomagnetic data of Ocean Drilling Program by Akaike’s Bayesian Information Criterion minimization. J. Geophys. Res. 101, 2815–2834. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Trans. Am. Geophys. Un. 77, 397. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P., Gillot, P.-Y., 2003. The age and duration of the Matuyama–Brunhes transition from new K-Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages. Earth Planet. Sci. Lett. 208, 149–163. Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A., Vanneste, L.E., 1997. The history of sedimentation on the continental rise west of the Antarctic Peninsula. In: Cooper, A.K., Barker, P.F. (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin. Part 2. Antarctic Research Series 71, American Geophysical Union, Washington, DC, pp. 29–49. Roberts, A.P., Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227, 345–359. Roberts, A.P., 2006. High-resolution magnetic analysis of sediment cores: strengths, limitations and strategies for maximizing the value of long-core magnetic data. Phys. Earth Planet. Int. 156, 162–178. Roberts, A.P., 2008. Geomagnetic excursions: knowns and unknowns. Geophys. Res. Lett. 35, L17307, doi:10.1029/2008GL034719. Sagnotti, L., Macrì, P., Camerlenghi, A., Rebesco, M., 2001. Environmental magnetism of late Pleistocene sediments from the pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events. Earth Planet. Sci. Lett. 192, 65–80. Sagnotti, L., Rochette, P., Jackson, M., Vadeboin, F., Dinarès-Turell, J., Winkler, A., “Mag-Net” Science Team, 2003. Inter-laboratory calibration of low field magArason, P., Levi, S., 1990. Compaction and inclination shallowing in deep-sea sediments from the Pacific Ocean. J. Geophys. Res. 95, 4501–4510. Aurnou, J.M., Andreadis, S., Zhu, L., Olson, P.L., 2003. Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134. Brachfeld, S.A., Acton, G.D., Guyodo, Y., Banerjee, S.K., 2000. High-resolution paleomagnetic records from Holocene sediments from the Palmer Deep, western Antarctic Peninsula. Earth Planet. Sci. Lett. 181, 421–441. Brachfeld, S.A., Domack, E.W., Kissel, C., Laj, C., Leventer, A., Ishman, S.E., Gilbert, R., Camerlenghi, A., Eglinton, L.B., 2003. Holocene history of the Larsen Ice shelf constrained by geomagnetic paleointensity dating. Geology 31, 749–752. Brancolini, G., Harris, P.T., 2000. Post Cruise Report AGSO Survey 217: Joint Italian/ Australian Marine Geoscienze Expedition Aboard the R.V. Tangaroa to the Geotge Vth Land Region of East Antartica during February–March, 2000. Australian National Antarctic Research Expeditions Project No. 1044, Wilkes Land Glacial History (WEGA), AGSO Record. Brown, L.L., Singer, B.S., Pickens, J.C., Jicha, B.R., 2004. Paleomagnetic directions and 40Ar//39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: Lava record of a Matuyama–Brunhes precursor? J. Geophys. Res. 109, B12101, doi:10.1029/2004JB003007. Busetti, M., Caburlotto, A., Armand, L., Damiani, D., Giorgetti, G., Lucchi, R.G., Quilty, P.G., Villa, G., 2003. Plio-Quaternary sedimentation on the Wilkes land continental rise: preliminary results. Deep-Sea Res. II 50, 1529–1562. Caburlotto, A., Macrì, P., Damiani, D., Giorgetti, G., Busetti, M., Villa, G., Lucchi, R.G., 2003. Piston cores from the Wilkes Land Rise: data and considerations. Terra Antartica Rep. 9, 63–68. Channell, J.E.T., Curtis, J.H., Flower, B.P., 2004. The Matuyama–Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments. Geophys. J. Int. 158, 489–505. Channell, J.E.T., 2006. Late Brunhes polarity excursions (Mono Lake, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin). Earth Planet. Sci. Lett. 244, 378–393. Channell, J.E.T., Xuan, C., Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283, 14–23. Clement, B.M., 2004. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428, 637–640. Coe, R.S., Singer, B.S., Pringle, M.S., Zhao, X., 2004. Matuyama–Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications. Earth Planet. Sci. Lett. 222, 667–684. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites. Grain-size and compositional dependence. Phys. Earth Planet. Int. 13, 260–267. Deamer, G.A., Kodama, K.P., 1990. Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. J. Geophys. Res. 95 (B4), 4511–4529. deMenocal, P.B., Ruddiman, W.F., Kent, D.V., 1990. Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes–Matuyama reversal and oxygen isotopic Stage 19.1. Earth Planet. Sci. Lett. 99, 1–13. Dinarès-Turell, J., Sagnotti, L., Roberts, A.P., 2002. Relative geomagnetic paleointensity from the Jaramillo Subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston core. Earth Planet. Sci. Lett. 194, 327–341. Escutia, C., Eittreim, S.L., Cooper, A.K., 1997. Cenozoic sedimentation on the Wilkes Land Continental Rise, Antarctica. In: Ricci, C.A. (Ed.), Proceedings of the VII International Symposium on Antarctic Earth Sciences. Terra Antarctica Publication, Siena, pp. 791–795. Fisher, R.A., 1953. Dispersion on a sphere. Proc. R. Soc. Lond. 217, 295–305. Glatzmaier, G.A., Roberts, P.H., 1995a. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Int. 91, 63–75. Glatzmaier, G.A., Roberts, P.H., 1995b.Athree-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209. Guillou, H., Singer, B., Laj, C., Kissel, C., Scaillet, S., Jicha, B.R., 2004. On the age of the Laschamp geomagnetic excursion. Earth Planet. Sci. Lett. 227, 331–343. Guyodo, Y., Valet, J.-P., 1999. Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399, 249–252. Guyodo, Y., Acton, G.D., Brachfeld, S., Channell, J.E.T., 2001. A sedimentary paleomagnetic record of the Matuyama Chron from the Western Antarctic Margin (ODP Site 1101). Earth Planet. Sci. Lett. 191, 61–74. Guyodo, Y., Channell, J.E.T., Thomas Ray, G., 2002. Deconvolution of u-channel paleomagnetic data near geomagnetic reversals and short events. Geophys. Res. Lett. 29, 1845, doi:10.1029/2002GL014927. Hartl, P., Tauxe, L., 1996. A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135. Hyodo, M., Biswas, D.K., Noda, T., Tomioka, N., Mishima, T., Itota, C., Sato, H., 2006. Millennial- to submillennial-scale features of the Matuyama–Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan. J. Geophys. Res. 111, B02103, doi:10.1029/2004JB003584. Kent, D.V., Schneider, D.A., 1995. Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval. Earth Planet. Sci. Lett. 129, 135–144. King, J.W., Banerjee, S.K., Marvin, J., 1983.Anewrock-magnetic approach to selecting sediments for geomagnetic paleointensity for the last 4000 years. J. Geophys. Res. 88 (B7), 5911–5921. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astron. Soc. 62, 699–718. Kuang, W., Bloxham, J., 1997. An Earth-like numerical dynamo model. Nature 389, 371–374. Langereis, C.G., Dekkers, M.J., de Lange, G.J., Paterne, M.E., van Santvoort, P.J.M., 1997. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes. Geophys. J. Int. 129, 75–94. Lawrence, K.P., Tauxe, L., Staudigel, H., Constable, C.G., Koppers, A., McIntosh, W., Johnson, C.L., 2009. Paleomagnetic field properties at high southern latitude. Geochem. Geophys. Geosyst. 10, Q01005, doi:10.1029/2008GC002072. Lund, S.P., Keigwin, L., 1994. Measurement of the degree of smoothing in sediment paleomagnetic secular variation records: an example from Late Quaternary deep-sea sediments of the Bermuda Rise, western North Atlantic Ocean. Earth Planet. Sci. Lett. 122, 317–330. Lund, S.P., Acton, G., Clement, B., Hastedt, M., Okada, M.,Williams, R., 1998. Geomagnetic field excursions occurred often during the last million years. EOS, Trans. Am. Geophys. Un. 79, 178–179. Macrì, P., Sagnotti, L., Dinares-Turell, J., Caburlotto, A., 2005. A composite record of Late Pleistocene relative geomagnetic paleointensity from the Wilkes Land Basin (Antarctica). Phys. Earth Planet. Int. 151, 223–242. Macrì, P., Sagnotti, L., Lucchi, R.G., 2006. A stacked record of relative geomagnetic paleointensity for the past 270 kyr from the western continental rise of the Antarctic Peninsula. Earth Planet. Sci. Lett. 252, 162–179. Meynadier, L., Valet, J.-P., Weeks, R., Shackleton, N.J., Hagee, V.L., 1992. Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57. Mitra, R., Tauxe, L., 2009. Full vector model for magnetization in sediments. Earth Planet. Sci. Lett. 286, 535–545. Nowaczyk, N.R., Antonow, M., 1997. High resolution magnetostratigraphy of four sediment cores from the Greenland Sea. I. Identification of the Mono Lake excursion, Laschamp and Biwa I/Jamaica geomagnetic polarity events. Geophys. J. Int. 131, 310–324. Nowaczyk, N., Frederichs, T., 1999. Geomagnetic events and relative paleointensity variations during the last 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea, indication for a strongly variable geomagnetic field. Int. J. Earth Sci. 88, 116–131. Oda, H., Shibuya, H., 1996. Deconvolution of long-core paleomagnetic data of Ocean Drilling Program by Akaike’s Bayesian Information Criterion minimization. J. Geophys. Res. 101, 2815–2834. Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Trans. Am. Geophys. Un. 77, 397. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P., Gillot, P.-Y., 2003. The age and duration of the Matuyama–Brunhes transition from new K-Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages. Earth Planet. Sci. Lett. 208, 149–163. Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A., Vanneste, L.E., 1997. The history of sedimentation on the continental rise west of the Antarctic Peninsula. In: Cooper, A.K., Barker, P.F. (Eds.), Geology and Seismic Stratigraphy of the Antarctic Margin. Part 2. Antarctic Research Series 71, American Geophysical Union, Washington, DC, pp. 29–49. Roberts, A.P., Winklhofer, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227, 345–359. Roberts, A.P., 2006. High-resolution magnetic analysis of sediment cores: strengths, limitations and strategies for maximizing the value of long-core magnetic data. Phys. Earth Planet. Int. 156, 162–178. Roberts, A.P., 2008. Geomagnetic excursions: knowns and unknowns. Geophys. Res. Lett. 35, L17307, doi:10.1029/2008GL034719. Sagnotti, L., Macrì, P., Camerlenghi, A., Rebesco, M., 2001. Environmental magnetism of late Pleistocene sediments from the pacific margin of the Antarctic Peninsula and interhemispheric correlation of climatic events. Earth Planet. Sci. Lett. 192, 65–80. Sagnotti, L., Rochette, P., Jackson, M., Vadeboin, F., Dinarès-Turell, J., Winkler, A., “Mag-Net” Science Team, 2003. Inter-laboratory calibration of low field magnetic and anhysteretic susceptibility measurements. Phys. Earth Planet. Int. 138, 25–38. Sagnotti, L., Budillon, F., Dinarès-Turell, J., Iorio, M., Macrì, P., 2005. Evidence for a variable paleomagnetic lock-in depth in the Holocene sequence from the Salerno Gulf (Italy): implications for “high-resolution” paleomagnetic dating. Geochem. Geophys. Geosyst. 6, doi:10.1029/2005GC001043. Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., Carracedo, J.C., 2002. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J. Geophys. Res. 107, 2307, doi:10.1029/2001JB001613. Singer, B.S., Jicha, B.R., Kirby, B.T., Geissman, J.W., Herrero-Bervera, E., 2008. 40Ar/39Ar dating links Albuquerque Volcanoes to the Pringle Falls excursion and the Geomagnetic Instability Time Scale. Earth Planet. Sci. Lett. 267, 584–595. Spassov, S., Heller, F., Evans, M.E., Yue, L.P., von Dobeneck, T., 2003. A lock-in model for the complex Matuyama–Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Geophys. J. Int. 155 (2), 350–366. Stacey, F.D., Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, Amsterdam, 195 pp. Stoner, J.S., Laj, C., Channell, J.E.T., Kissel, C., 2002. South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for interhemispheric correlation. Quat. Sci. Rev. 21, 1141–1151. Stoner, J.S., Channell, J.E.T., Hodell, D.A., Charles, C.D., 2003. A∼570-kyr geomagnetic paleosecular variation record from the sub-Antarctic South Atlantic (ODP Site 1089). J. Geophys. Res. 108 (B5), 2242, doi:10.1029/2001JB001390. Sugiura, N., 1979. ARM, TRM and magnetic interactions: concentration dependence. Earth Planet. Sci. Lett. 42, 451–455. Tan, X.D., Kodama, K.P., Chen, H.L., Fang, D.J., Sun, D.J., Li, Y.A., 2003. Paleomagnetism and magnetic anisotropy of Cretaceous red beds from the Tarim basin, northwest China: evidence for a rock magnetic cause of anomalously shallow paleomagnetic inclinations from central Asia. J. Geophys. Res. 108, 2107, doi:10.1029/2001JB001608. Tarduno, J.A., Wilkison, S.L., 1996. Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet. Sci. Lett. 144, 315–326. Tauxe, L., Kent, D.V., 1984. Properties of a detrital remanence carried by haematite from study of modern river deposits and laboratory redeposition experiments. Geophys. J. R. Astr. Soc. 77, 543–561. Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev. Geophys. 31, 319–354. Tauxe, L., Herbert, T., Shackleton, N.J., Kok, Y.S., 1996. Astronomical calibration of the Matuyama–Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences. Earth Planet. Sci. Lett. 140, 133–146. Tauxe, L., Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar? In: Channell, J.E.T., et al. (Eds.), Timescales of the Paleomagnetic field, Geophysical Monograph 145, pp. 101–116. Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., Nérini, D., 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 ka BP: a stacked record of sedimentary sequences of the Portuguese margin. Earth Planet. Sci. Lett. 219, 377–396. Tauxe, L., 2006. Long term trends in paleointensity: the contribution of DSDP/ODP submarine basaltic glass collections. Phys. Earth Planet. Interiors 156, 223– 241. Tauxe, L., Yamazaki, T., 2007. Paleointensities. In: Schubert, G. (Ed.), Treatise on Geophysics, vol. 5, Geomagnetism. Elsevier Ltd., Oxford, pp. 509–564. Thouveny, N., Bourlès, D.L., Saracco, G., Carcaillet, J.T., Bassinot, F., 2008. Paleoclimatic context of geomagnetic dipole lows and excursions in the Brunhes, clue for an orbital influence on the geodynamo? Earth Planet. Sci. Lett. 275, 269– 284. Tric, E., Laj, C., Valet, J.-P., Tucholka, P., Paterne, M., Gichard, F., 1991. The Blake geomagnetic event: transition geometry, dynamical characteristics and geomagnetic significance. Earth Planet. Sci. Lett. 102, 1–13. Valet, J.P., Meynadier, L., Bassinot, F.C., Garnier, F., 1994. Relative paleointensity across the last geomagnetic reversal from sediments of the Atlantic, Indian and Pacific Oceans. Geoph. Res. Lett. 21 (6), 485–488. Valet, J.-P., Meynadier, L., 1998. A comparison of different techniques for relative paleointensity. Geophys. Res. Lett. 25, 89–92. van Vreumingen, M.J., 1993a. The influence of salinity and flocculation upon the acquisition of remanent magnetization in some artificial sediments. Geophys. J. Int. 114 (3), 607–614. van Vreumingen, M.J., 1993b. The magnetization intensity of some artificial suspensions while flocculating in a magnetic-field. Geophys. J. Int. 114 (3), 601–606. Yamazaki, T., Ioka, N., 1997. Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility. Geophys. Res. Lett. 24, 751–754. Yamazaki, T., Oda, H., 2001. A Brunhes–Matuyama polarity transition record from anoxic sediments in the South Atlantic (Ocean Drilling Program Hole 1082C). Earth Planets Space 53, 817–827. Yamazaki, T., Oda, H., 2002. Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination. Science 295, 2435–2438. Yamazaki, T., Oda, H., 2004. Intensity-Inclination Correlation on Long-Term Secular Variation of the Geomagnetic Field and its Relevance to Persistent Non-Dipole Component. AGU Monograph 145 “Timescales of the Internal Geomagnetic Field”, pp. 287–298. Yamazaki, T., 2008. Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: implications for relative paleointensity normalization. Geochem. Geophys. Geosyst. 9, doi:Q02005, doi:10.1029/2007GC001797. Zhu, R.X., Zhou, L.P., Laj, C., Mazaud, A., Ding, Z.L., 1994. The Blake geomagnetic episode recorded in Chinese loess. Geophys. Res. Lett. 21, 697–700.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMacrì, P.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorCaburlotto, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Oceanografia e Geofisica Sperimentale, Borgo Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS, Trieste, Italy-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.orcid0000-0001-7259-6884-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Macri et al _2010.pdf3.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

16
checked on Feb 7, 2021

Page view(s) 50

173
checked on Apr 24, 2024

Download(s)

25
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric