Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5941
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCascella, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCiaranfi, N.; Dipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMaiorano, P.; Dipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.authorallMarino, M.; Dipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.authorallTaddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-03-02T12:59:43Zen
dc.date.available2010-03-02T12:59:43Zen
dc.date.issued2010-01-18en
dc.identifier.urihttp://hdl.handle.net/2122/5941en
dc.description.abstractThe Montalbano Jonico (MJ) section, cropping out in Southern Italy, represents a potential candidate to define the Lower/Middle Pleistocene boundary and it has been proposed as a suitable Global Stratotype Section and Point (GSSP) of the Ionian Stage (Middle Pleistocene). The MJ section is the only continuous benthic and planktonic δ18O on-land reference in the Mediterranean area for the Mid-Pleistocene transition, spanning an interval between about 1240 and 645 ka. Combined biostratigraphy and sapropel chronology, tephra stratigraphy and complete high-resolution benthic and planktonic foraminiferal stable oxygen isotope records already provide a firm chronostratigraphic framework for the MJ section. However, magnetostratigraphy was still required to precisely locate the Brunhes-Matuyama transition and to mark the GSSP for the Ionian stage. We carried out a palaeomagnetic study of a subsection (Ideale section) of the MJ composite section, sampling 61 oriented cores from 56 stratigraphic levels spread over a ca. 80-m-thick stratigraphic interval that correlates to the oxygen isotopic stage 19 and should therefore include the Brunhes-Matuyama reversal. The palaeomagnetic data indicate a stable and almost single-component natural remanent magnetization (NRM). A characteristic remanent magnetization (ChRM) was clearly identified by stepwise demagnetization of the NRM. The ChRM declination values vary around 0◦ and the ChRM inclination around the expected value (59◦) for a geocentric axial dipole field at the sampling locality. This result indicates that the section has been remagnetized during the Brunhes Chron. A preliminary study of 27 additional not azimuthally oriented hand samples, collected at various levels from other parts of the MJ composite section, indicates that all the samples are of normal polarity and demonstrates that the remagnetization is widespread across the whole exposed stratigraphic sequence. A series of specific rock magnetic techniques were then applied to investigate the nature of the main magnetic carrier in the study sediments, and they suggest that the main magnetic mineral in the MJ section is the iron sulphide greigite (Fe3S4). Scanning electron microscope observations and elemental microanalysis reveal that greigite occurs both as individual euhedral crystals and in iron sulphides aggregates filling voids in the clay matrix. Therefore, we infer that the remagnetization of the section is due to the late-diagenetic growth of greigite under reducing conditions, most likely resulting in the almost complete dissolution of the original magnetic minerals. Iron sulphide formation in the MJ section can be linked to migration of mineralized fluids. Our inferred timing of the remagnetization associated with greigite growth represents the longest remanence acquisition delay documented in greigite-bearing clays of the Italian peninsula so far.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries3/180 (2010)en
dc.relation.isversionofhttp://hdl.handle.net/2122/5556en
dc.subjectMagnetostratigraphyen
dc.subjectRemagnetizationen
dc.subjectRock and mineral magnetizationen
dc.titleRock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): evidence for late diagenetic growth of greigite and implications for magnetostratigraphyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1049-1066en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doi10.1111/j.1365-246X.2009.04480.xen
dc.relation.referencesAzzaroli, A., 1968. Studi illustrativi della carta geologica d’Italia–Formazioni geologiche, Servizio Geologico d’Italia, I, 183–185. Bazylinski, D.A., Heywood, B.R., Mann, S. & Frankel, R.B., 1993. Fe3O4 and Fe3S4 in a bacterium, Nature, 366, 218. Benning, L.G.,Wilkin, R.T. & Barnes H.L., 2000. Reaction pathways in the Fe–S system below 100 8C, Chem. Geol., 167, 25– 51. Berner, R.A., 1967. Thermodynamic stability of sedimentary iron sulfides, Am. J. Sci., 265, 773–785. Berner, R.A., 1970. Sedimentary pyrite formation, Am. J. Sci., 268, 1–23. Berner, R.A., 1984. Sedimentary pyrite formation: an update, Geoch. Cosmochem. Acta., 48, 605–615. Bickert, T.,Curry,W.B.&Wefer, G., 1997. Late Pliocene toHolocene (2.6–0 Ma) western equatorial Atlantic deep-water circulation: inferences from benthic stable isotope, in Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154, pp. 239–253, eds Shackleton, N.J., Curry, W.B., Richter, C. & Bralower, T.J., College Station, TX. Brilli, M., Lerche, I., Ciaranfi, N. & Turi, B., 2000. Evidences of precession and obliquity orbital forcing in oxygen-18 isotope composition of Montalbano Jonico Section (Basilicata, southern Italy), Appl. Radiat. Isotopes, 52, 957–964. Chadima, M. & Hrouda, F., 2006. Remasoft 3.0–a user-friendly paleomagnetic data browser and analyzer, Travaux G´eophysiques, XXVII, 20–21. Chang, L.,Roberts, A.P.,Tang,Y.,Rainford,B.D.,Muxworthy, A.R.&Chen, Q., 2008. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), J. geophys. Res., 113, B06104, doi:10.1029/2007JB005502. Channell, J.E.T., Curtis, J.H. & Flower, B.P., 2004. The Matuyama-Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments, Geophys. J. Int., 158, 489–505. Ciaranfi, N. & D’Alessandro, A., 2005. Overview of theMontalbano Jonico area and section: a proposal for a boundary stratotype for the lower–middle Pleistocene, Southern Italy Foredeep, Quat. Int., 131, 5–10. Ciaranfi, N., Nuovo, G. & Ricchetti, G., 1971. Le argille di Taranto e di Montemesola: studio geologico, geochimica e paleontologico, Boll. Soc. Geol. It., 90, 293–314. Ciaranfi, N., D’Alessandro, A. & Marino, M., 1997. A candidate section for the Lower-Middle Pleistocene Boundary (Apennine Foredeep, South Italy), in Proceedings 30th International Geological Congress, Beijing, China, Vol. 11, pp. 201–211, eds Naiwen, W. & Remane, J., VSP, the Netherlands. Ciaranfi, N., D’Alessandro, A., Girone, G., Maiorano, P., Marino, M., Soldani, D. & Stefanelli, S., 2001. Pleistocene sections in the Montalbano Jonico area and the potential GSSP for Early-Middle Pleistocene in the Lucania Basin (Southern Italy), Memorie Scienze Geologiche, 53, 67–83. Ciaranfi, N. et al., 2008. The Lower-Middle Pleistocene Montalbano Jonico Section in the Southern Apennine Foredeep, Geosed 2008, Bari 23–27 settembre, 32–33, Abstracts. Ciaranfi, N. et al., 2009. Integrated Stratigraphy and Astronomical Tuning of Lower-Middle PleistoceneMontalbano Jonico Land Section (Southern Italy), Quater. Int., in press, doi:10.1016/j.quaint.2009.10.027. Cifelli, F., Mattei, M., Hirt, A.M. & Gunther, A., 2004. The origin of tectonic fabrics in “undeformed” clays: the early stages of deformation in extensional sedimentary basins, Geophys. Res. Lett., 31, L09604, doi:10.1029/2004GL019609. Cifelli, F., Mattei, M., Chadima, M., Hirt, A.M. & Hansen, A., 2005. The origin of tectonic lineation in extensional basins: combined neutron texture and magnetic analyses on “undeformed” clays, Earth planet. Sci. Lett., 235, 62–78. Cita, M.B., 2008. Summary of Italian marine stages of the Quaternary, Episodes, 31, 251–254. Cita, M.B., Capraro, L., Ciaranfi, N., Di Stefano, E., Marino, M., Rio, D., Sprovieri, R. & Vai, G.B., 2006. Calabrian and Ionian: a proposal for the definition ofMediterranean stages for Lower andMiddle Pleistocene, Episodes, 29(2), 107–114. Cita, M.B. et al., 2008. The Calabrian Stage redefined, Episodes, 31(4), 408–419. Coe, R.S., Singer,B.S., Pringle, M.S.&Zhao, X., 2004. Matuyama–Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40Ar/39Ar ages and implications, Earth planet. Sci. Lett., 222, 667– 684. Comas, M.C. et al., 1996. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 161. College Station, TX, doi:10.2973/odp.proc.ir.161.1996. de Kaenel, E., Siesser, W.G. & Murat, A., 1999. Pleistocene calcareous nannofossil biostratigraphy and the Western Mediterranean sapropels, Sites 974 to 977 and 979 in Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 161, pp. 159–181, College Station, TX. Drouin, D., R´eal Couture, A., Joly, D., Tastet, X., Aimez, V. & Gauvin, R., 2007. CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning, 29, 92–101, doi:10.1002/sca.20000. Dunlop, D.J. & O¨ zdemir, O¨ ., 1997. Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York. Farina, M., Esquivel, D.M.S. & Lins de Barros, H.G.P., 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism, Nature, 343, 256–258. Fisher, R.A., 1953. Dispersion on a sphere, Proc. Roy. Soc. Lond., A217, 295–305. Florindo, F. & Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int., 123, 340–354. Fu, Y., von Dobeneck, T., Franke, C., Heslop, D. & Kasten S., 2008. Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A), Earth planet. Sci. Lett., 275, 233–245. Garavelli, C.L.&Nuovo, G., 1971. La greigite delle argille di Montemesola. Periodico di Mineralogia, 40, 305–327. Harrison, R.J. & Feinberg, J.M., 2008. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophys.Geosyst., 9, Q05016, doi:10.1029/2008GC001987. Horng, C.S., Torii, M., Shea, K.-S.&Kao, S.-J., 1998. Inconsistentmagnetic polarities between greigite- and pyrrhotite/magnetite bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan, Earth planet. Sci. Lett., 164, 467–481. Hunger, S. & Benning, L.G., 2007. Greigite: a true intermediate on the polysulfide pathway to pyrite, Geochem. Trans., 8, doi:10.1186/1467- 4866-8-1. H¨using, S.K.,Kuiper, K.F., Link,W.,Hilgen, F.J.&Krijgsman,W., 2009. The upper-Tortonian-lower Messinian at Monte dei Corvi (Northern Apennines, Italy): completing a Mediterranean reference section for the Tortonian Stage, Earth planet. Sci. Lett., 282, 140–157. Jel´ınek, V., 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud. Geophys. Geod., 22, 50–62. Jel´ınek, V., 1981. Characterization of the magnetic fabrics of rocks, Tectonophysics, 79, 63–67. Jiang,W.T., Horng, C.S., Roberts, A.P. & Peacor, D.R., 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite, Earth planet. Sci. Lett., 193, 1–12. Joannin, S., 2007. Changements climatiques en m´editerran´ee `a la transition Pl´eistoc`ene inf´erieur-moyen: pollens, isotopes stables et cyclostratigraphie. Unpubl. PhD thesis. University Lyon 1, France. Joannin, S., Ciaranfi,N.&Stefanelli, S., 2008.Vegetation changes during the late Early Pleistocene atMontalbano Jonico (Province ofMatera, southern Italy) based on pollen analysis. Palaeogeog. Palaeclimat. Palaeoecol., 270(1–2), 92–101. Johnson, C.L. et al., 2008. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows, Geochem. Geophys. Geosyst., 9, Q04032, doi:10.1029/2007GC001696. Kao, S.J., Horng, C.S., Liu, K.K. & Roberts, A.P., 2004. Carbon-Sulfur-Iron Relationships in Sedimentary Rocks from Southwestern Taiwan: influence of Geochemical Environment on Greigite and Pyrrhotite Formation, Chem. Geol., 203, 153–168. Kirschvink, J.L., 1980. The least-square line and plane and the analysis of paleomagnetic data. Geophys. J. R. astr. Soc., 62, 699–718. Krs, M., Novak, F., Krsova,M., Pruner, P., Kouklikova, L. & Jansa, J., 1992. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krusn´e hory Piedmont, Bohemia, Phys. Earth planet. Inter., 70, 273–287. Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. & Levrard, B., 2004. A longterm numerical solution for the insolation quantities of the Earth. Astron. Astrophys., 428, 261–285, doi:10.1051/0004- 6361:20041335. Lisiecki, L. & Raymo, M., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1), doi:10.1029/2004PA001071. Lourens, L., 2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr, Paleoceanography, 19(3), PA3010, doi:10.1029/2003PA000997. Lourens, L., Hilgen, F., Shackleton, N.J., Laskar, J. &Wilson, D., 2004. The Neogene Period, in A Geological Time Scale pp. 409–440, eds Gradstein, F.M., Ogg, J.G. & Smith, A.G., Cambridge University Press, Cambridge. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geoph. Res. Lett., 17, 159–162. Maiorano, P. & Marino, M., 2004. Calcareous nannofossil bioevents and environmental control on temporal and spatial patterns at the early–middle Pleistocene, Mar. Micropaleont., 53, 405–422. Maiorano, P., Marino, M., Di Stefano, E. & Ciaranfi, N., 2004. Calcareous nannofossil events in the lower-middle Pleistocene transition at the Montalbano Jonico section and ODP Site 964d: calibration wih isotope and sapropel stratigraphy, Riv. Ital. Paleont. Stratigr., 110(2), 547– 557. Mann, S., Sparks,N.H.C., Frankel, R.B.,Bazylinski,D.A.&Jannasch, H.W., 1990. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature, 343, 258–261. Mattei, M., Sagnotti, L., Faccenna, C. & Funiciello, R., 1997. Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationship with compressional and extensional tectonics, Tectonophysics, 271, 107–122. Murat, A., 1999. Pliocene-Pleistocene occurrence of sapropel in the western Mediterranean Sea and their relation to eastern Mediterranean sapropels. in Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 161, pp. 519–527, eds Zahn, R., Comas, M.C. & Klaus, A., College Station, TX. Passier, H.F., de Lange, G.J. & Dekkers, M.J., 2001. Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea, Geophys. J. Int., 145, 604–614. Pierre, C., Belanger, P., Sali`ege, J.F., Urrutiaguer, M.J. & Murat, A., 1999. Paleoceanography of westernMediterranean during the Pleistocene: oxygen and carbon isotope records at Site 975. in Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 161, pp. 481–488, eds Zahn, R., Comas, M.C. & Klaus, A., College Station, TX. Pike, C.R., Roberts, A.P.&Verosub, K.L., 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. appl. Phys., 85, 6660–6667. Porreca, M.,Mattei, M.&DiVincenzo, G., 2009. Post-deformational growth of late diagenetic greigite in lacustrine sediments from southern Italy, Geophys. Res. Lett., 36, L09307, doi:10.1029/2009GL037350. Quidelleur, X., Carlut, J., Soler, V., Valet, J.-P. & Gillot, P.-Y., 2003. The age and duration of the Matuyama-Brunhes transition from new K-Ar data from La Palma (Canary Islands) and revisited 40Ar/39Ar ages, Earth planet. Sci. Lett., 208, 149–163. Raffi, I., 2002. Revision of the early–middle Pleistocene calcareous nannofossil biochronology (1.75–0.85 Ma), Mar. Micropaleontol., 45, 25– 55. Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci., 282, 1244–1263 Richmond, G.M., 1996. The INQUA-approved provisional Lower-Middle Pleistocene boundary. in The Early Middle Pleistocene in Europe, pp. 319–326, ed. Turner, C., Balkema, Rotterdam. Richter, C., Roberts, A.P., Stoner, J.S., Benning, L.D. & Chi, C.T., 1998. Magnetostratigraphy of Pliocene–Pleistocene sediments from the eastern Mediterranean Sea, Proc. ODP, Sci. Res., 160, 61–74. Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth planet. Sci. Lett., 134, 227–236. Roberts, A.P. & Weaver, R., 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth planet. Sci. Lett., 231, 263–277. Roberts, A.P., Pike, C.R. & Verosub, K.L., 2000. FORC diagrams: A new tool for characterizing the magnetic properties of natural samples, J. geophys. Res., 105, 28,461–28,475. Roberts, A.P., Jiang, W.T., Florindo, F., Horng, C.S. & Laj, C., 2005. Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy, Geophys. Res. Lett., 32, L05307, doi:10.1029/2004GL022137. Roberts, A.P., Liu, Q.S., Rowan, C.J., Chang, L., Carvallo, C., Torrent, J. & Horng, C.S., 2006. Characterization of hematite (a- Fe2O3), goethite (a-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams, J. geophys. Res., 111, B12S35, doi: 10.1029/2006JB004715. Rochette, P., 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies, J. Struct. Geol., 9(8), 1015–1020. Rowan, C.J. & Roberts, A.P., 2008. Widespread remagnetizations and a new view of Neogene tectonic rotations within the Australia-Pacific plate boundary zone, New Zealand, J. geophys. Res., 113, B03103, doi:10.1029/2006JB004594. Rowan, C.J., Roberts, A.P. & Broadbent, T., 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view, Earth planet. Sci. Lett., 277, 223–235. Sagnotti, L., 1992. Paleomagnetic evidence for a Pleistocene counterclockwise rotation of the Sant’Arcangelo basin, Geophys. Res. Lett., 19, 135–138. Sagnotti, L. & Winkler, A., 1999. Rock magnetism and palaeomagnetism of greigite-bearing mudstones in the Italian peninsula, Earth planet. Sci. Lett., 165, 67–80. Sagnotti, L., Speranza, F., Winkler, A., Mattei, M. & Funiciello, R., 1998. Magnetic fabric of clay sediments from the external northern Apennines (Italy), Phys. Earth planet. Inter., 105, 73–93. Sagnotti, L., Winkler, A., Alfonsi, L., Florindo, F. & Marra F., 2000. Paleomagnetic constraints on the Plio-Pleistocene geodynamic evolution of the external central-northern Apennines (Italy), Earth planet. Sci. Lett., 180, 243–257. Sagnotti, L., Roberts, A.P., Weaver, R., Verosub, K.L., Florindo, F., Pike, C.R., Clayton, T. & Wilson, G.S., 2005. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100. Schallreuter, R., 1984. Framboidal pyrite in deep sea sediments, Init. Repts. DSDP., 75, 875–891. Singer, B.S., Jicha, B.R., Kirby, B.T., Geissman, J.W. & Herrero-Bervera, E., 2008. 40Ar/39Ar dating links Albuquerque Volcanoes to the Pringle Falls excursion and the Geomagnetic Instability Time Scale, Earth planet. Sci. Lett., 267, 584–595. Snowball, I.F., 1997a. Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden, Geophys. J. Int., 129, 624–636. Snowball, I.F., 1997b. The detection of single-domain greigite (Fe3S4) using rotational remanent magnetization (RRM) and the effective gyro field (Bg): mineral magnetic and palaeomagnetic applications, Geophys. J. Int., 130, 704–716. Speranza, F., Sagnotti, L. & Mattei, M., 1997. Tectonics of the Umbria- Marche-Romagna arc (central northern Apennines, Italy): new paleomagnetic constraints, J. geophys. Res., 102, 3153–3166. Speranza, F., Mattei, M., Sagnotti, L. & Grasso, F., 2000. Rotational differences between the northern and southern Tyrrhenian domains: palaeomagnetic constraints from the Amantea basin (Calabria, Italy), J. geol. Soc. Lond., 157, 327–334. Stefanelli, S., 2003. Benthic foraminiferal assemblages as tools for paleoenvironmental reconstruction of the early-middle Pleistocene Montalbano Jonico composite section, Boll. Soc. Paleont. Ital., 42, 281–299. Stefanelli, S., 2004. Cyclic changes in oxygen based on foraminiferal microhabitats: Early-Middle Pleistocene, Lucania Basin (southern Italy), J. Micropaleont., 23, 81–95. Stefanelli, S., Capotondi, L. & Ciaranfi, N., 2005. Foraminiferal record and environmental changes during the deposition of the early-middle Pleistocene sapropels in southern Italy, Palaeogeog. Palaeclimat. Palaeoecol., 216, 27–52. Stephenson, A. & Snowball, I.F., 2001. A large gyromagnetic effect in greigite, Geophys. J. Int., 145, 570–575. Tauxe, L. & Kent, D., 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?, in Timescales of the Internal Geomagnetic Field, Geophys. Monogr. Ser., Vol. 145., pp. 101–115, ed. Channell, J.E.T.C. et al., AGU, Washington, DC. Tauxe, L., Herbert, T., Shackleton, N.J. & Kok, Y.S., 1996. Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences, Earth planet. Sci. Lett., 140, 133–146. Thompson, R. & Cameron, T.D.J., 1995. Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: an example of a magnetostratigraphic conundrum in a hydrocarbon producing area, in Palaeomagnetic Applications in Hydrocarbon Exploration and Production, Vol. 98, pp. 223–236, eds Turner, P. & Turner, A., Geol. Soc. London Spec. Publ. Torii, M., Fukuma, K., Horng, C.S. & Lee, T.Q., 1996. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples, Geophys. Res. Lett., 23, 1813–1816. Vasiliev, I., Franke, C., Meeldijk, J.D., Dekkers, M.J., Langereis, C.G. & Krijgsman, W., 2008. Putative greigite magnetofossils from the Pliocene epoch, Nat. Geosci., 1, 782–786. Vandamme, D., 1994. A new method to determine paleosecular variation, Phys. Earth planet. Inter., 85, 131–142. Wilkin, R.T. & Barnes, H.L., 1997. Formation processes of framboidal pyrite, Geochim. Cosmochim. Acta, 61, 323–339.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorCascella, A.en
dc.contributor.authorCiaranfi, N.en
dc.contributor.authorMacrì, P.en
dc.contributor.authorMaiorano, P.en
dc.contributor.authorMarino, M.en
dc.contributor.authorTaddeucci, J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.departmentDipartimento di Geologia e Geofisica, Università di Bari, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptDipartimento di Geologia e Geofisica, Università di Bari, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-8255-3244-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.orcid0000-0003-4917-1786-
crisitem.author.orcid0000-0002-0516-3699-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
sagnotti et al 10_GJI_180_1049-1066.pdf927.46 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

41
checked on Feb 10, 2021

Page view(s) 50

242
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric