Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/586
DC FieldValueLanguage
dc.contributor.authorallFinizola, A.; Laboratoire Magmas et Volcans, OPGC, Université Blaise Pascal - CNRS, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.authorallSortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallLénat, J. F.; Laboratoire Magmas et Volcans, OPGC, Université Blaise Pascal - CNRS, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.authorallValenza, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-12-05T11:29:46Zen
dc.date.available2005-12-05T11:29:46Zen
dc.date.issued2002en
dc.identifier.urihttp://hdl.handle.net/2122/586en
dc.description.abstractThis work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.en
dc.format.extent539 bytesen
dc.format.extent1106054 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries116(2002)en
dc.subjectStrombolien
dc.subjecthydrothermal systemen
dc.subjectself-potentialen
dc.subjectsoil gasen
dc.subjectcarbon dioxideen
dc.subjectAeolian islandsen
dc.titleFluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveysen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1^18en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.relation.referencesAllard, P., Carbonnelle, J., Dajlevic, D., Le Bronec, J., Morel,P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, O., 1991. Eruptive and di¡use emissions of CO2 from Mount Etna. Nature 351, 387-391. Anza, S., Badalamenti, B., Giammanco, S., Gurrieri, S., Nuccio,P.M., Valenza, M., 1993. Preliminary study on emanation of CO2 from soils in some areas of Mount Etna (Sicily). Acta Vulcanol. 3, 189-193. Aubert, M., 1999. Practical evaluation of steady heat discharge from dormant active volcanoes: case study of Vulcarolo ¢ssure (Mount Etna, Italy). J. Volcanol. Geotherm. Res. 92, 413-429. Aubert, M., Kieffer, G., 1984. Evolution d’une intrusion magmatique dans le flanc sud de l’Etna entre juin 1982 et juin 1983. Résultats de potentiel spontané (PS) et essai d’interprétation de l’éruption de 1983. C.R. Acad. Sci. Paris Sér 296, 379-382. Aubert, M., Baubron, J.C., 1988. Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil-atmosphere analysis. J. Volcanol. Geotherm. Res. 35, 217-225. Aubert, M., Ye¤ne¤ Atangana, Q., 1996. Self-potential method in hydrogeological exploration of volcanic areas. Ground Water 34, 1010-1016. Azzaro, R., Branca, S., Giammanco, S., Gurrieri, S., Rasa', R., Valenza, M., 1998. New evidence for the form and extent of the Pernicana Fault System (Mt. Etna) from structural and soil-gas surveying. J. Volcanol. Geotherm. Res. 84, 143-152. Ballestracci, R., 1982. Self-potential survey near the craters of Stromboli volcano (Italy). Inference for internal structure and eruption mechanism. Bull. Volcanol. 45, 349-365. Bonaccorso, A., 1998. Evidence of a dyke-sheet intrusion at Stromboli volcano inferred through continuous tilt. Geophys. Res. Lett. 25, 4225-4228. Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal ¢elds. Annu. Rev. Earth Planet. Sci. 6, 229-250. Carapezza, M.L., Federico, C., 2000. The contribution of fluid geochemistry to the volcano monitoring of Stromboli. J. Volcanol. Geotherm. Res. 95, 227-245. Corwin, R.F., Hoover, D.B., 1979. The Self-Potential method in geothermal exploration. Geophysics 44, 226-245. D’Alessandro, W., De Domenico, R., Parello, F., Valenza, M.,1992. Soil degassing in tectonically active areas of Mt. Etna. Acta Vulcanol. 2, 175-183. D’Amore, F., Truesdell, A.H., 1988. A review of solubilities and equilibrum constants for gaseous species of geothermal interest. Sci. Geol. Bull. 41, 309-332. Dana, Y.N., 1992. Contribution de la méthode de polarisation spontane¤e (PS) à la connaissance structurale et à la surveillance de quelques volcans indone¤siens. Thèse de doctorat, Universite¤ Blaise Pascal, Clermont-Ferrand. Di Maio, R., Mauriello, P., Patella, D., Petrillo, Z., Piscitelli,S., Siniscalchi, A., 1998. Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82, 219-238. Di Maio, R., Patella, D., 1994. Self-potential anomaly generation in volcanic areas. The Mt. Etna case-history. Acta Vulcanol. 4, 119-124. Di Maio, R., Patella, D., Siniscalchi, A., 1994. Etna: self-potential,magnetotelluric and geoelectrical measurements. Acta Vulcanol. 6, 30-31. Etiope, G., Beneduce, P., Calcara, M., Favali, P., Frugoni, F.,Schiattarella, M., Smriglio, G., 1999. Structural pattern and CO2-CH4 degassing of Ustica Island, Southern Tyrrhenian basin. J. Volcanol. Geotherm. Res. 88, 291-304. Falsaperla, S., Lanzafame, G., Longo, V., Spampinato, S.,1999. Regional stress field in the area of Stromboli (Italy):insights into structural data and crustal tectonic earthquakes. J. Volcanol. Geotherm. Res. 88, 147-166. Finizola, A., 1996. Etude d’une fissure thermique au Stromboli;interpre¤tation volcanologique et structurale, Mémoire de D.E.A. Processus Magmatiques et Métamorphiques - Volcanologie, Universite¤ Blaise Pascal, Clermont-Ferrand, 60 pp. Finizola, A., Ramos, D., Macedo, O., 1998. Self-potential studies of hydrothermal systems and structure on Misti and Ubinas volcanoes, S. Peru, 23rd EGS Meeting, Ann. Geophys. Suppl. I to Vol. 16 (Solid Earth, Geophysics,and Geodesy), 194. Finizola, A., Sortino, F., Le¤nat, J.F., Aubert, M., Ripepe, M.,Valenza, M., submitted. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic £uids measurements. Structural and monitoring implications. Bull. Volcanol. Fisher, T.P., Sturchio, N.C., Stix, J., Arehart, G.B., Counce, D., Williams, S.N., 1997. The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. J. Volcanol. Geotherm. Res. 77, 229-253. Francalanci, L., 1987. Evoluzione vulcanologica e magmatologica dell’isola di Stromboli (Isole Eolie): Relazioni tra magmatismo calc-alcalino e shoshonitico. Tesi di Dottorato,Dipartimento di Scienze della Terra, Florence, 351 pp. Fulignati, P., Gioncada, A., Sbrana, A., 1996. Modello geologico del sistema idrotermale-magmatico di Vulcano. In: La Volpe, L., Dellino, P., Nuccio, M., Privitera, E., Sbrana, A. (Eds.), Progetto Vulcano. Risultati delle Attivita' di Ricerca 1993-1995, pp. 97-118. Gabbianelli, G., Romagnoli, C., Rossi, P.L., Calanchi, N.,1993. Marine geology of the Panarea^Stromboli area (Aeolian Archipelago, Southeastern Tyrrhenian sea). Acta Vulcanol. 3, 11-20. Giammanco, S., Gurrieri, S., Valenza, M., 1997. Soil CO2 degassing along tectonic structures of Mount Etna (Sicily): the Pernicana fault. Appl. Geochem. 12, 429-436. Harris, A.J.L., Maciejewski, A.J.H., 2000. Thermal surveys of the Vulcano Fossa fumarole field 1994-1999: evidence for fumarole migration and sealing. J. Volcanol. Geotherm. Res. 77, 229-253. Hochstein, M.P., Browne, P.R.L., 2000. Surface manifestations of geothermal systems with volcanic heat sources. In:Encyclopedia of Volcanoes. A Press, pp. 835-855. Hornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E.,Francalanci, L., Lenhart, R., 1993. Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian Arc, Italy. Acta Vulcanol. 3, 21-68. Irwin, W.P., Barnes, I., 1980. Tectonic relations of carbone dioxyde discharges and earthquakes. J. Geophys. Res. 85,3115-3121. Jackson, D.B., Kauahikaua, J., 1987. Regional self-potential anomalies at Kilauea volcano: ‘Volcanism in Hawaii’ chapter 40. US Geol. Surv. Prof. Pap. 1350, 947-959. Keller, J., Hornig-Kjarsgaard, I., Koberski, U., Stadlbauer, E.,Lenhart, R., 1993. Geological map of the island of Stromboli. Acta Vulcanol. 3. Klusman, R.W., 1993. Soil Gas and Related Methods for Natural Resource Exploration. John Wiley and Sons, New York. Lénat, J.F., 1987. Structure et dynamique interne d’un volcan basaltique intraplaque océanique: Le Piton de la Fournaise (Ile de la Réunion). Thèse de doctorat e's sciences. Université Blaise Pascal, Clermont-Ferrand. Lénat, J.F., Robineau, B., Durand, S.,Bachélery, P., 1998. Etude de la zone sommitale du volcan Karthala (Grande Comore) par polarisation spontanée. C.R. Acad. Sci. 327,781-788. Malengreau, B., Lénat, J.F., Bonneville, A., 1994. Cartographie et surveillance temporelle des anomalies de Polarisation Spontanée (PS) sur le Piton de la Fournaise. Bull. Soc. Géol. Fr. 165, 221-232. Matsushima, N., Michiwaki, M., Okazaki, N., Ichikawa, N., Takagi, A., Nishida, Y., Mori, H.Y., 1990. Self-potential study in volcanic areas - Usu, Hokkaido Komaga-take and Me-akan. J. Fac. Sci. Hokkaido Univ. Ser. VII 8,465-477. Nishida, Y., Tomiya, H., 1987. Self-potential studies in volcanic areas - Usu volcano. J. Fac. Sci. Hokkaido Univ. Ser. VII 8, 173-190. Pasquare', G., Francalanci, L., Garduno, V.H., Tibaldi, A.,1993. Structure and geologic evolution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanol. 3, 79-89. Patella, D., 1997. Self-potential global tomography including topographic e¡ects. Geophys. Prosp. 45, 843-863. Rosi, M., 1980. The Island of Stromboli. Rend. Soc. Ital. Mineral. Petrol. 36, 345-368. Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y.,Nakamura, N., Satake, H., Mizutani, Y., 1983. Origin of hydrogen and carbon dioxyde in fault gases and its relation to fault activity. Geology 91, 239-258. Williams-Jones, G., Stix, J., Heiligmann, M., Charland, A.,Sherwood Lollar, B., Arner, N., Garzon, G., Barquero, J., Fernandez, E., 2000. A model of di¡use degassing at three subduction-related volcanoes. Bull. Volcanol. 62, 130-142. Zablocki, C.J., 1976. Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. In:Proceedings, 2nd UN Symposium of the development and use of geothermal resources, San Francisco, CA, May 1975, 2, pp. 1299-1309. Zablocki, C.J., 1978. Streaming potentials resulting from the descent of meteoric water. A possible source mechanism for Kilauean self-potential anomalies. Geotherm. Resour. Counc. Trans. 2, 747-748. Zanchi, A., Francalanci, L., 1989. Analisi geologico-strutturale dell’isola di Stromboli: alcune considerazioni preliminari. Boll. GNV 5, 1027-1044. Zlotnicki, J., Michel, S., Annen, C., 1994. Anomalies de polarisation spontanée et systèmes convectifs sur le volcan du Piton de la Fournaise (Ile de la Re¤union, France). C.R. Acad. Sci. Paris 318-II, 1325-1331.en
dc.description.fulltextpartially_openen
dc.contributor.authorFinizola, A.en
dc.contributor.authorSortino, F.en
dc.contributor.authorLénat, J. F.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentLaboratoire Magmas et Volcans, OPGC, Université Blaise Pascal - CNRS, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentLaboratoire Magmas et Volcans, OPGC, Université Blaise Pascal - CNRS, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptLaboratoire Magmas et Volcans, OPGC, Université Blaise Pascal, CNRS,-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0002-5083-7349-
crisitem.author.orcid0000-0002-2400-911X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
FinizolaJVGR 2002.pdfMain article1.08 MBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s) 50

193
checked on Apr 24, 2024

Download(s)

88
checked on Apr 24, 2024

Google ScholarTM

Check