Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5859
DC FieldValueLanguage
dc.contributor.authorallTodesco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2010-01-25T11:48:54Zen
dc.date.available2010-01-25T11:48:54Zen
dc.date.issued2009-05-12en
dc.identifier.urihttp://hdl.handle.net/2122/5859en
dc.description.abstractThis is a parametric study that was carried out to investigate the signals generated by a hydrothermal system fed by a pulsating source of magmatic fluids. This study focuses on the effects that selected properties of the source have on the evolution of hydrothermal activity at Campi Flegrei, Italy. Numerical simulations are carried out to describe a multiphase and multicomponent hydrothermal system. Each simulation describes a short unrest phase, followed by a prolonged quiet period. During the unrest, specific properties of the fluid source (flow rate, fluid composition, source size, and unrest duration) are modified with respect to selected baseline values. The evolution of the system is tracked by looking at two parameters that can be monitored in active volcanic areas: the composition of fumarolic gases and gravity changes. The results describe the temporal evolution of these two observables and allow comparisons of the effects of different source properties. All of the simulated unrest events cause measurable changes in gas composition and gravity. For the geometry and system properties considered, these changes always last beyond the end of the unrest period, and can often persist for decades. Fluid flow rate is the source property that mostly affects the observable evolution. Gravity is more sensitive to source properties than gas composition, and it undergoes the largest and quickest changes. The results also highlight the major role that rock properties and initial conditions have in the evolution of these observable signals.en
dc.description.sponsorshipDepartment of Civil Protectionen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/114 (2009)en
dc.subjecthydrothermal fluidsen
dc.subjectmodelingen
dc.subjectmonitoringen
dc.subjectsignalsen
dc.titleSignals from the Campi Flegrei hydrothermal system: Role of a ‘‘magmatic’’ source of fluidsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB05201en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2008JB006134en
dc.relation.referencesAizawa, K. (2008), Classification of self-potential anomalies on volcanoes and possible interpretations for their subsurface structure, J. Volcanol. Geotherm. Res., 175, 253–268. Bedrosian, P.A., Unsworth, M.J, Johnston, M.J.S. (2007), Hydrothermal circulation at Mount St. Helens determined by self-potential measurements, J. Volcanol. Geotherm. Res., 160, 137–146. Battaglia, M., C. Troise, F. Obrizzo, F. Pingue, and G. De Natale (2006), Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, L01307, doi:10.1029/ 2005GL024904. Bergfeld, D., Evans, W.C., Howle, J.F., and C.D. Farrar (2006), Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, easter n California, USA, J. Volcanol. Geotherm. Res., 152, 140–156. Bianco, F., Del Pezzo, E., Saccorotti, G., and G. Ventura (2004), The role of hydrothermal fluids in triggering the July-August 2000 seismic swarm at Campi Flegrei, Italy: evidence from seismological and mesostructural data, J. Volcanol. Geotherm. Res., 133, 229–246 Bonafede, M. (1991), Hot fluid migration, an efficient source of ground deformation, application to the 1982–1985 crisis at Campi Flegrei — Italy, J. Volcanol. Geotherm. Res., 48, 187–198. Bruno, P. P. G., G. P. Ricciardi, Z. Petrillo, V. Di Fiore, A. Troiano, and G. Chiodini (2007), Geophysical and hydrogeological experiments from a shallow hydrothermal system at Solfatara Volcano, Campi Flegrei, Italy: Response to caldera unrest, J. Geophys. Res., 112, B06201, doi:10.1029/2006JB004383. Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., and M. Russo (2003), Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy), Geophys. Res. Lett., 30, 1434–1437. Chiodini, G. and L. Marini (1998), Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system, Geochim. Cosmochim. Acta, 62, 2673–2687. Chouet, B. (1996), Long-period volcano seismicity: Its source and use in eruption forecasting, Nature, 380, 309–316 Corey, A.T. (1954), The interrelation between gas and oil relative permeabilities, Producers Monthly, Nov. 1954, 38-41. Finizola, A., Lénat, J.F., Macedo, O., Ramos, D., Thouret, J.C., and F. Sortino (2004), Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements, , J. Volcanol. Geotherm. Res., 135, 343–360. Fournier, R.O. (1987), Conceptual model of brine evolution in magmatic hydrothermal systems, in: Volcanism in Hawaii, edited by R.W. Decker, T.L. Wright, and P.H. Stauffer, USGS. Giggenbach, W.F. (1996), Chemical composition of volcanic gases, in: Monitoring and Mitigation of Volcanic Hazards, edited by R. Scarpa and R. I. Tilling,. Springer Verlag, Berlin. Gudmundsson, A., FJeldskaar, I., and S.L. Brenner (2002), Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields, J. Volcanol. Geotherm. Res., 116, 257–278. Helmig, R. (1997), Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modelling of Hydrosystems. Springer-Verlag, Berlin. Hernandez, P.A., Notsu, K., Salazar, J.M., Mori, T., Natale, G., Okada, H., Virgili, G., Shimoike, Y., Sato, M., and N. M. Perez (2001), Carbon dioxide degassing by advective flow from Usu Volcano, Japan. Science, 292, 83–86. Hurwitz, S., L. B. Christiansen, and P. A. Hsieh (2007), Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations, J. Geophys. Res., 112, B02206, doi:10.1029/2006JB004689. Ingebritsen, S.E., and W.E. Sanford (1998), Groundwater in Geologic Processes, Cambridge University Press, New York. Newhall, C.G., and D. Dzurisin (1988), Historical unrest at large calderas of the world, USGS Bull., 1855, 1108. Norton, D.L. (1984), Theory of hydrothermal systems, Ann. Rev. Earth Planet Sci., 12, 155–177. Norton, D.L. and J. Knight (1977), Transport phenomena in hydrothermal system: cooling plutons, Am. J. Sci., 277, 937–981. O’Brien, G.S., and C.J. Bean (2008), Seismicity on volcanoes generated by gas slug ascent, Geophys. Res. Lett., 35, L16308, doi:10.1029/ 2008GL035001 Oppenheimer, C. (2003), Volcanic degassing, in: The Crust edited by R. L. Rudnick, Treatise on Geochemistry, 3, edited by H.D. Holland and K.K. Turekian, Elsevier-Pergamon, Oxford. Pribnow, D.F.C., Schütze, C., Hurter, S.J., Flechsig, C., and J.H. Sass (2003), Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding, J. Volcanol. Geotherm. Res., 127, 329–345. Pruess, K., Oldenburg, C.M., and G. Moridis (1999), TOUGH2 User’s Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, California. Revil, A., et al. (2008), Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements, J. Geophys. Res., 113, B07207, doi:10.1029/2007JB005394. Sorey, M.L., McConnel, V.S., and E. Roeloffs (2003), Summary of recent research in Long Valley Caldera, California, J. Volcanol. Geotherm. Res., 127, 165–173. Symonds, R.B., Gerlach, T.M., and M.H. Reed (2001), Magmatic gas scrubbing: implications for volcano monitoring, J. Volcanol. Geotherm. Res., 108, 303–341. Todesco M. (1997), Origin of fumarolic fluids at Vulcano (Italy). Insights from isotope data and numerical modeling of hydrothermal circulation, J. Volcanol. Geotherm. Res., 79, 63–85. Todesco M. (2008), Hydrothermal fluid circulation and its effect on caldera unrest, in: Caldera volcanoes: Analysis, Modelling and Response edited by J. Gottsmann and J. Martì, Developments in Volcanology, 10, Elsevier, Amsterdam, The Netherlands. Todesco M., Chiodini G., and G. Macedonio (2003), Monitoring and modeling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy), J. Volcanol. Geotherm. Res., 125, 57–79. Todesco M., Rutqvist J., Chiodini G., Pruess K., and C. M. Oldenburg (2004), Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation, Geothermics, 33, 531–547. Todesco M. and G. Berrino (2005), Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera, Earth Plan. Sci. Lett., 240, 328–338. Verma, A. and K. Pruess (1988), Thermohydrological conditions and silica redistribution near high-level nuclear waste emplaced in saturated geological formations, J. Geophys. Res., 93, 1159–1173. Zlotnicki, J. and Y. Nishida (2003), Review on morphological insights of self-potential anomalies on volcanoes, Surv. Geophys., 24, 291–338.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTodesco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0002-5939-0985-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Todesco2009.pdfMain article with figures3.51 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

26
checked on Feb 10, 2021

Page view(s) 50

227
checked on Apr 24, 2024

Download(s)

23
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric