Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5828
DC FieldValueLanguage
dc.contributor.authorallBagnato, E.; Dipartimento CFTA, Università di Palermo, Italyen
dc.contributor.authorallParello, F.; Dipartimento CFTA, Università di Palermo, Italyen
dc.contributor.authorallValenza, M.; Dipartimento CFTA, Università di Palermo, Italyen
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2010-01-22T18:14:15Zen
dc.date.available2010-01-22T18:14:15Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5828en
dc.description.abstractMercury is outstanding among the global environmental pollutants of continuing concern. Although degassing of active volcanic areas represents an important natural source of mercury into the atmosphere, still little is known about the amount and behaviour of Hg in volcanic aquifers, especially regarding its chemical speciation. In order to assess the importance of mercury emissions from active volcanoes, thermal waters were sampled in the area surrounding La Solfatara, Pozzuoli bay. This is the most active zone of the Phlegrean Fields complex (coastal area north–west of Naples), with intense hydrothermal activity at present day. Studied groundwaters show total Hg (THg) concentrations range from 56 to 171 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization (WHO, 1993). We also carefully discriminated the different aqueous species of Hg in the collected water samples. Besides, original data on Hg determination in gaseous manifestations at La Solfatara crater are also reported. We measured volcanogenic mercury concentration and Hg/Stot ratio both in the volcanic plume and in fumarolic condensates in order to better constrain Hg reactivity once emitted into the atmosphere. Data on Hg/Stot reveal that there is no significant difference between Hg volcanic composition at the venting source (fumaroles) and in near-vent diluted volcanic plumes (1.6×10−5 and 1.9×10−5, respectively), suggesting that there is limited Hg chemical processing in volcanic fumarole plumes, at least on the timescales of a few seconds investigated here. Combining the mean fumaroles Hg/CO2 mass ratio of about 1.3×10−8 (molar ratio: 2.1×10−9) with the hydrothermal soil diffuse CO2 degassing of the area, the annual Hg flux from La Solfatara is estimated as 7 kg y−1 (0.007 t y−1). Current mercury emission from La Solfatara volcano represents a very small contribution to the estimated global volcanic budget for this element, and the estimated Hg flux is considerably lower than that estimated from open-conduit active basaltic volcanoes.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/187 (2009)en
dc.subjecthydrothermal watersen
dc.subjecttotal mercuryen
dc.subjectmercury speciationen
dc.subjectfumarolesen
dc.titleMercury content and speciation in the Phlegrean Fields volcanic complex: Evidence from hydrothermal system and fumarolesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber250–260en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/j.jvolgeores.2009.09.010en
dc.relation.referencesAdriano, D.C., 1986. Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, NY. pp. 302. Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A., Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily). Geophysical Research Letters 34, 1–6. doi:10.1029/2007GL030762 L21307. Aiuppa, A., Avino, R., Brusca, L., Caliro, S., Chiodini, G., D'Alessandro, W., Favara, R., Federico, C., Ginevra, W., Inguaggiato, S., Longo, M., Pecoraino, G., Valenza, M., 2006. Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chemical Geology 229, 313–330. Aiuppa, A., Federico, C., Giudice, G., Guerrieri, S., Paonite, A., Valenza, M., 2004. Plume chemistry provides insights into mechanisms of sulfur and halogen degassing in basaltic volcanoes. Earth and Planetary Science Letters 222, 469–483. Allard, P., Carbonelle, J.M., Faivre-Peirret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffusive emissions of CO2 from Mt. Etna. Nature 351, 387–391. Appelo, C.A.J., 1988. WATEQP Program. Institute voor Aard-wetenshappen. Vrije Universiteit, Amsterdam. Armienti, P., Barbieri, F., Bizouard, H., Clocchiatti, R., Innocenti, F., Metrich, N., Rosi, M., Sbrana, A., 1983. The Phlegrean Fields: magma evolution within a shallow chamber. Explosive Volcanism. In: Sheridan, M.F., Barberi, F. (Eds.), Journal of Volcanology and Geothermal Research, 17, pp. 289–312. Bagnato, E., Aiuppa, A., Parello, F., D'Alessandro, Allard, P., Calabrese, S., 2009. Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles). Journal of Volcanology and Geothermal Research 179, 96–106. doi:10.1016/j.jvolgeores.2008.10.005. Bagnato, E., Allard, P., Parello, F., Aiuppa, A., Calabrese, S., Hammouya, G., 2009. Mercury gas emissions from La Soufrière Volcano, Guadeloupe Island (Lesser Antilles). Chemical Geology 266 (3–4), 267–273. Bagnato, E., 2007. Estimates of Mercury Emission Rates in Active Volcanic Systems. Ph.D. Thesis, 152 pp, Università degli Studi di Palermo. Bagnato, E., Aiuppa, A., Parello, F., Calabrese, S., D'Alessandro, W., Mather, T.A., McGonigle, A.J.S., Pyle, D.M., Wängberg, I., 2007. Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy). Atmospheric Environment 41, 7377–7388. doi:10.1016/j.atmosenv.2007.05.060. Barberi, F., Hill, D.P., Innocenti, F., Luongo, G., Treuil, M. (Eds.), 1984. The 1982–1984 Bradyseismic Crisis at Phlegrean Fields: Bulletin of Volcanology, Special Issue, vol. 74. Barnes, H.L., Seaward, T.M., 1997. Geothermal systems and mercury deposits. Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, New York. Barringer, J.L., Szabo, Z., Kauffman, L.J., Barringer, T.H., Stackelberg, P.E., Ivahnenko, T., Rajagopalan, S., Krabbenhoft, D.P., 2005. Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. Science of the Total Environment 346 (1–3), 169–183. Bichler, M., Poljanc, K., Sortino, F., 1995. Determination and speciation of minor and trace elements in volcanic exhalations by NAA. Journal of Radioanalytical and Nuclear Chemistry 192, 183–194. doi:10.1007/BF02041722. Blockley, S.P.E., Bronk Ramsey, C., Pyle, D.M., 2008. Improved age modelling and highprecision age estimates of late Quaternary tephras, for accurate paleoclimate reconstruction. Journal of Volcanology and Geothermal Research 177 (1), 251–262. Bloom, N.S., Fitzgerald, W.F., 1988. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold vapour atomic fluorescence detection. Analytica Chimica Acta 209, 151–161. Caltabiano, T., Burton, M., Giammanco, S., Allard, P., Bruno, N., Murè, F., Romano, R., 2004. In: Bonaccorso, A., et al. (Ed.), Volcanic Gas Emission from the Summit Craters and Flanks of Mt. Etna, 1987–2000: Am. Geophys. Union Geophys. Monogr., vol. 143. Volcano Laboratory, Mt. Etna, pp. 111–128. Caprarelli, G., Tsutsumi, M., Turi, B., 1997. Chemical and isotopic signature of the basement rocks from the Campi Flegrei geothermal field (Naples, southern Italy): inferences about the origin and evolution of its hydrothermal fluids. Journal of Volcanology and Geothermal Research 76, 63–82. Carpi, A., Lindberg, S.E., 1998. Application of a Teflon™ dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. Atmospheric Environment 32 (5), 873–882. Chiodini, G., Todesco, M., Caliro, S., Del Gaudio, C., Macedonio, G., Russo, M., 2003. Magma degassing as a trigger of bradyseismic events: the case of the Phlegrean Fields (Italy). Geophysical Research Letters 30 (8), 14–34. doi:10.1029/2002GL016790. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. Journal of Geophysical Research 106 (B8), 16213–16221. Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochimica et Cosmochimica Acta 62, 2673–2687. Chiodini, G., Cioni, R., Magro, G., Marini, I., Panichi, C., Raco, B., Russo, M., 1997. Chemical and isotopic variations of Bocca Grande fumarole (Solfatara volcano, Phlegraean Fields). Acta Vulcanologica 8 (2), 228–232. Christenson, B.W., Mroczek, E.K., 2003. Potential reaction pathways of Hg in some New Zealand hydrothermal environments. Society of Economic Geologists 10, 111–132. Cioni, R., Corazza, E., Marini, L., 1984. Gas steam ratio as an indicator of heat transfer at Solfatara fumaroles, Phlegrean Fields (Italy). Bulletin of Volcanology 47, 295–302. De Gennaro, M., Franco, E., Stanzione, D., 1980. Le alterazioni ad opera di fluidi termali alla solfatara di Pozzuoli (Napoli). Mineralogia e Geochimica 49, 5–22. De Vivo, H.E., Belkin, M.Barbieri, Chelini, W., Lattanzi, P., Lima, A., Tolomeo, L., 1989. The Campi Flegrei (Italy) geothermal system: a fluid inclusion study of the Mofete and San Vito fields. Journal of Volcanology and Geothermal Research 36, 303–326. Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G., Jennings, S.G., Temme, C., 2002. Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmospheric Environment 36, 5267–5276. Ebinghaus, R., Jennings, S.G., Schroeder, W., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallsschlarger, D., Xiao, Z., 1999. International field intercomparison measurements of atmospheric mercury species at Mace head, Ireland. Atmospheric Environment 33, 3063–3073. doi:10.1016/S1352-2310(98) 00119-8. Engle, M.A., Gustin, M.S., Goff, F., Counce, D.A., Janik, C.J., Bergfeld, D., Rytuba, J.J., 2006. Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States. Journal of Geophysical Research 111, D17304. doi:10.1029/2005JD006563. Ferrara, R., Mazzolai, B., Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. The Science of the Total Environment 259, 115–121. Ferrara, R., Maserti, B.E.,De Liso, A., Cioni, R., Raco, B., Taddeucci, G., Edner, H., Ragnarson, P., Svanberg, S.,Wallinder, E., 1994. Atmospheric mercury emission at La Solfatara volcano (Pozzuoli, Phlegrean Fields— Italy). Chemosphere 29, 1421–1428. Fukuzaki, N., Tominaga, Y., Kifun, I., Tamura, R., Maruyana, T., Shinoda, Y., Horii, K., 1983. Mercury emission from Minamijigokudani, Mt. Myoko accompanied with fumarolic activity and its influence. Chikyukagaku 17, 156–160. Giggenbach, W.F., 1992. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology 87, 1927–1944.Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta 52, 2749–2763. Gustin, M.S., Lindberg, S.E., Austin, K., Coolbaugh, M., Vette, A., Zhang, H., 2000. Assessing the contribution of natural sources to regional atmospheric mercury budgets. Science of the Total Environment 259, 61–71. Horvat, M., Kotnik, J., Logar, M., Fajon, V., Zvonaric, T., Pirrone, N., 2003. Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmospheric Environment 37 (1), S93–S108. HSC, 1999. HSC Chemistry for Windows, Version 4, Outokumpu Research Oy, pori, Finland. Jenne, E.A., 1970. Atmospheric and fluvial transport of mercury. Mercury in the Environment: Geological Survey profession, vol. 713, pp. 40–45. Martin, R.S., Mather, T.A., Pyle, D.M., 2006. High-temperature mixtures of magmatic and atmospheric gases. Geochemistry Geophysics Geosystems 7. Mather, T.A., Pyle, D.M., Tsanev, V.I., McGonigle, A.J.S., Oppenheimer, C., Allen, A.G., 2006. A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. Journal of Volcanology and Geothermal Research 149, 297–311. Mather, T.A., Oppenheimer, C., Allen, A.G., McGonogle, A.J.S., 2004. Aerosol chemistry of emissions from three contrasting volcanoes in Italy. Atmospheric Environment 38, 5637–5649. Nakagawa, R., 1984. Amounts of mercury discharged to atmosphere from fumaroles and hot spring gases in geothermal areas. Nippon Kagaru Kaishi 709–715. Nakagawa, R., 1985. Amounts of mercury discharged to atmosphere from fumaroles in geothermal areas of Hokkaido. Nippon Kagaru Kaishi 703–708. Nakagawa, R., 1999. Estimation of mercury emissions from geothermal activity in Japan. Chemosphere 38, 867–1871. doi:10.1016/S0045-6535(98)00401-9. Noda, T., 1983. Geochemical prospecting method using mercury as indicator. Geothermal Energy 8, 229–244. Nriagu, J., Becker, C., 2003. Volcanic emissions of mercury to the atmosphere: global and regional inventories. The Science of The Total Environment 304, 3–12. O'Dwyer, M., Padgett, M.J., McGonigle, A.J.S., Oppenheimer, C., Inguaggiato, S., 2003. Real time measurements of volcanic H2S/SO2 ratios by UV spectroscopy. Geophysical Research Letters 30. doi:10.1029/2003GL017246. Orsi, G., De Vita, S., di Vito, M., 1996. The restless, resurgent Campi Flegrei nested caldera( Italy): constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research 74, 179–214. Panichi, C., Volpi, G., 1999. Hydrogen, oxygen and carbon isotope ratios of Solfatara fumaroles (Phlegrean Fields, Italy): further insights into source processes. Journal of Volcanology and Geothermal Research 91, 321–328. Parker, J.L., Bloom, N.S., 2005. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 337, 253–263. Parkhurst, D.L., 1995. User's guide to PHEEQC—a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations report 143, 95–4227. Poissant, L., Casimir, A., 1998. Water–air and soil–air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environment 32, 883–893. Pyle, D.M., Mather, T.A., 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment 37, 5115–5121. Rosi, M., Sbrana, A. (Eds.), 1987. Phlegrean Fields. : Quaderni della Ricerca Scientifica, vol. 114. CNR, Rome, Italy. Sakamoto, H., Tomiyasu, T., Yonehara, N., 1989. Determination of ultratrace amounts of mercury in atmosphere and its distribution. Report of Faculty of Science, Kagoshima University 22, 159–169. Siegel, S.M., Siegel, B.Z., 1984. First estimate of annual mercury flux at Kilauea main vent. Nature 309, 146–147. Stoiber, R.E., Williams, S.N., Huebert, B.J., 1986. Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. Journal of Geophysical Research 91, 12215–12231. Stumm, W., Morgan, J.J. (Eds.), 1996. 3rd Edition. Aquatic Chemistry— Chemical Equilibria and Rates in Natural Waters, Wiley Interscience. New York. Tedesco, M., Scarsi, P., 1999. Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (Southern Italy): mixing of different sources in relation to seismic activity. Earth and Planetary Science Letters 171, 465–480. Todesco, M., Rutqvist, J., Chiodini, G., Pruess, K., Oldenburg, C.M., 2004. Modeling of recent volcanic episodes at Phlegrean Fields (Italy): geochemical variations and ground deformation. Geothermics 33, 531–547. Troise, C., De Natale, G., Pingue, F., Obrizzo, F., De Martino, P., Tammaro, U., Boschi, E., 2007. Renewed round uplift at campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophysical Research Letters 34, L03301. doi:10.1029/2006GL028545. U.S. E.P.A., 1999a. Method 1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Washington (DC): Office of Water, Engineering and Analysis Division (4303), U.S. E.P.A. 821-R-95-027. U.S. E.P.A., 1999a. Method IO-5: Sampling and Analysis for Atmospheric Mercury. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. Center for Environmental Research Information Office of Research and Development. U.S. Environmental Protection Agency, Cincinnati, OH, p. 45268. Valentino, G.M., Stanzione, D., 2004. Geochemical monitoring of the thermal waters of the Phlegrean Fields. Journal of Volcanology and Geothermal Research 133, 261–289. Valentino, G.M., Stanzione, D., 2003. Source processes of the thermal waters from the Phlegrean Fields (Naples, Italy) by means of the study of selected minor and trace element distribution. Chemical Geology 194, 245–274. Valentino, G.M., Cortecci, G., Franco, E., Stanzione, D., 1999. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy. Journal of Volcanology and Geothermal Research 91, 329–344. Varekamp, J.C., Buseck, P.R., 1986. Global mercury flux from volcanic and geothermal sources. Applied Geochemistry 1, 65–73. Varekamp, J.C., Buseck, P.R., 1984. The speciation of mercury in hydrothermal systems, with applications for ore deposition. Geochim. Cosmochim. Acta 48, 177–186. Varekamp, J.C., Buseck, P.R., 1981. Mercury emissions from Mount St Helens during September 1980. Nature 293, 555–556. Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–1232. WHO, 1993. WHO Guidelines for Drinking Water Quality. http://www.who.int/ water_sanitation_health/GDWD/index.html. Wifrey, M.R., Rudd, J.W.M., 1990. Environmental factors affecting the formation of methylmercury in low pH lakes. Environmental Toxicology and Chemistry 9 (7), 853–869. Witt, M.L.I., Mather, T.A., Pyle, D.M., Aiuppa, A., Bagnato, E., Tsanev, V.I., 2008a. Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. Journal of Geophysical Research 113, B06203. doi:10.1029/2007JB005401. Witt, M.L.I., Fischer, T.P., Pyle, D.M., Yang, T.F., Zellmer, G.F., 2008b. Fumarole compositions and mercury emissions from the Tatun Volcanic field, Taiwan: results from multi-component gas analyser, portable mercury spectrometer and direct sampling techniques. Journal of Volcanology and Geothermal Research 178, 636–643. Zambardi, T., Sonke, J.E., Toutain, J.P., Sortino, F., Shinohara, H., 2009. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth and Planetary Science Letters 277, 236–243. doi:10.1016/j.epsl.2008.10.023en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBagnato, E.en
dc.contributor.authorParello, F.en
dc.contributor.authorValenza, M.en
dc.contributor.authorCaliro, S.en
dc.contributor.departmentDipartimento CFTA, Università di Palermo, Italyen
dc.contributor.departmentDipartimento CFTA, Università di Palermo, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUniversità di Palermo, DiSTeM, Italy-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-2285-0842-
crisitem.author.orcid0000-0002-8522-6695-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
Show simple item record

WEB OF SCIENCETM
Citations 50

17
checked on Feb 10, 2021

Page view(s)

381
checked on Mar 27, 2024

Download(s)

21
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric