Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5815
DC FieldValueLanguage
dc.contributor.authorallCollettini, C.; University of Perugiaen
dc.contributor.authorallViti, C.; University of Sienaen
dc.contributor.authorallSmith, S .A. F; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallHoldsworth, R. E.; University of Durhamen
dc.date.accessioned2010-01-22T15:56:05Zen
dc.date.available2010-01-22T15:56:05Zen
dc.date.issued2009-06en
dc.identifier.urihttp://hdl.handle.net/2122/5815en
dc.description.abstractFault zones that slip when oriented at large angles to the maximum compressive stress, i.e., weak faults, represent a signifi cant mechanical problem. Here we document fault weakening induced by dissolution of dolomite and subsequent precipitation of calcite + abundant talc along a low-angle normal fault. Within the fault core, talc forms an interconnected foliated network that deforms by frictional sliding along 50–200-nm-thick talc lamellae. The low frictional strength of talc, combined with dissolution-precipitation creep, can explain slip on low-angle normal faults. In addition, the stable sliding behavior of talc is consistent with the absence of strong earthquakes along such structures. The development of phyllosilicates such as talc by fl uid-assisted processes within fault zones cutting Mg-rich carbonate sequences may be widespread, leading to profound and long-term fault weakness.en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Americaen
dc.relation.ispartofGeologyen
dc.relation.ispartofseries6/37 (2009)en
dc.subjectFaulten
dc.subjectWeakeningen
dc.subjectLow-Angleen
dc.subjectTalcen
dc.titleDevelopment of interconnected talc networks and weakening of continental low-angle normal faultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber567-570en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zonesen
dc.identifier.doi10.1130/G25645A.1en
dc.relation.referencesAxen, G.J., 2004, Mechanics of low-angle normal faults, in Karner, G.D., et al., eds., Rheology and deformation of the lithosphere at continental margins (MARGINS Theoretical and Experimental Earth Science Series): New York, Columbia University Press, p. 46–91. Barchi, M.R., Minelli, G., and Pialli, G., 1998, The CROP 03 profi le: A synthesis of results on deep structures of the Northern Apennines: Memorie della Societa Geologica Italiana, v. 52, p. 383–400. Boncio, P., Brozzetti, F., and Lavecchia, G., 2000, Architecture and seismotectonics of a regional low-angle normal fault zone in central Italy: Tectonics, v. 19, p. 1038–1055, doi: 10.1029/ 2000TC900023. Bos, B., and Spiers, C.J., 2002, Frictional-viscous fl ow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profi les: Journal of Geophysical Research, v. 107, no. B2, 2028, doi: 10.1029/2001JB000301. Byerlee, J.D., 1978, Friction of rocks: Pure and Applied Geophysics, v. 116, p. 615–626, doi: 10.1007/BF00876528. Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., and Cocco, M., 2007, Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italy: Journal of Geophysical Research, v. 112, B10310, doi: 10.1029/2007JB005015. Collettini, C., and Holdsworth, R.E., 2004, Fault zone weakening processes along low-angle normal faults: Insights from the Zuccale Fault, Isle of Elba, Italy: Geological Society of London Journal, v. 161, p. 1039–1051, doi: 10.1144/ 0016-764903-179. Collettini, C., and Sibson, R.H., 2001, Normal faults normal friction?: Geology, v. 29, p. 927–930, doi: 10.1130/0091-7613(2001)029<0927:NFNF> 2.0.CO;2. Collettini, C., De Paola, N., Holdsworth, R.E., and Barchi, M.R., 2006, The development and behavior of low-angle normal faults during Cenozoic asymmetric extension in the Northern Apennines, Italy: Journal of Structural Geology, v. 28, p. 333–352, doi: 10.1016/j.jsg.2005.10.003. Dini, A., Innocenti, F., Rocchi, S., Tonarini, S., and Westerman, D.S., 2002, The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy: Geological Magazine, v. 139, p. 257–279, doi: 10.1017/ S0016756802006556. Escartín, J., Mével, C., MacLeod, C.J., and McCaig, A.M., 2003, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45 N: Geochemistry, Geophysics, Geosystems, v. 4, 1067, doi: 10.1029/2002GC000472. Escartín, J., Andreani, M., Hirth, G., and Evans, B., 2008, Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures: Earth and Planetary Science Letters, v. 268, p. 463–475, doi: 10.1016/j.epsl.2008.02.004. Floyd, J.S., Mutter, J.C., Goodliffe, A.M., and Taylor, B., 2001, Evidence for fault weakness and fl uid fl ow within an active low-angle normal fault: Nature, v. 411, p. 779–783, doi: 10.1038/35081040. Hayman, N.W., Knott, J.R., Cowan, D.S., Nemser, E., and Sarna-Wojcicki, A.M., 2003, Quaternary low-angle slip on detachment faults in Death Valley, California: Geology, v. 31, p. 343–346, doi: 10.1130/0091-7613(2003)031<0343:QLASOD> 2.0.CO;2. Hetch, L., Freiberger, R., Gilg, H.A., Grundmann, G., Kostitsyn, Y.A., 1999, Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Gopfersgrun (Fichtelgebirge, Germany): Chemical Geology, v. 155, p. 115–130. Holdsworth, R.E., 2004, Weak faults—Rotten cores: Science, v. 303, p. 181–182, doi: 10.1126/ science.1092491. Holness, M.B., 1997, Fluid fl ow paths and mechanisms of fl uid infi ltration in carbonates during contact metamorphism: The Beinn an Dubhaich aureole, Skye: Journal of Metamorphic Geology, v. 15, p. 59–70, doi: 10.1111/j.1525- 1314.1997.00005.x. Jackson, J.A., and White, N.J., 1989, Normal faulting in the upper continental crust: Observation from regions of active extension: Journal of Structural Geology, v. 11, p. 15–36, doi: 10.1016/ 0191-8141(89)90033-3. Keller, J.V.A., and Coward, M.P., 1996, The structure and evolution of the Northern Tyrrhenian Sea: Geological Magazine, v. 133, p. 1–16. Moore, D.E., and Lockner, D.A., 2008, Talc friction in the temperature range 25°–400 °C: Relevance for fault-zone weakening: Tectonophysics, v. 449, p. 120–132, doi: 10.1016/j.tecto.2007.11.039. Moore, D.E., and Rymer, M., 2007, Talc-bearing serpentinites and the creeping section of the San Andreas fault: Nature, v. 448, p. 795–797, doi: 10.1038/nature06064. Niemeijer, A.R., and Spiers, C.J., 2006, Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge: Tectonophysics, v. 427, p. 231–253, doi: 10.1016/j.tecto.2006.03.048. Numelin, T., Marone, C., and Kirby, E., 2007, Frictional properties of natural fault gouge from a low-angle normal fault, Panamint Valley, California: Tectonics, v. 26, TC2004, doi: 10.1029/2005TC001916. Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, P., and Kassaras, I., 1996, A microseismic study in the western part of the Gulf of Corinth (Greece): Implications for large scale normal faulting mechanisms: Geophysical Journal International, v. 126, p. 663–688. Sibson, R.H., 1985, A note on fault reactivation: Journal of Structural Geology, v. 7, p. 751–754, doi: 10.1016/0191-8141(85)90150-6. Smith, S.A.F., Holdsworth, R.E., Collettini, C., and Imber, J., 2007, Using footwall structures to constrain the evolution of low-angle normal faults: Geological Society of London Journal, v. 164, p. 1187–1192, doi: 10.1144/0016-76492007-009. Tornos, F., and Spiro, B.F., 2000, The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, Northern Spain): Economic Geology and the Bulletin of the Society of Economic Geologists, v. 95, p. 1277–1296. Tracy, R.J., and Frost, B.R., 1991, Phase equilibria and thermobarometry of calcareous, ultramafi c and mafi c rocks, and iron formations, in Kerrick, M.D., ed., Contact metamorphism: Mineralogical Society of America Reviews in Mineralogy, v. 26, p. 847. Wernicke, B., 1995, Low-angle normal faults and seismicity: A review: Journal of Geophysical Research, v. 100, p. 20,159–20,174, doi: 10.1029/95JB01911. Widmer, T., 1991, Zur Stratigraphie und Sedimentologie der Anhydritgruppe (Mittlere Trias) in der Region Liestal-Arisdorf (Baselland, Nordwestschweiz): Beiträge zur Geologie der Schweiz, geotechnische serie, v. 79, 107 p. Zoback, M.D., and 12 others, 1987, New evidence on the state of stress of the San Andreas fault system: Science, v. 238, p. 1105–1111, doi: 10.1126/science.238.4830.1105.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCollettini, C.en
dc.contributor.authorViti, C.en
dc.contributor.authorSmith, S .A. Fen
dc.contributor.authorHoldsworth, R. E.en
dc.contributor.departmentUniversity of Perugiaen
dc.contributor.departmentUniversity of Sienaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversity of Durhamen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità La Sapienza-
crisitem.author.deptDipartimento di Scienze della Terra Università degli Studi di Siena,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversity of Durham-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009_Collettini_et_al_Geology.pdfMain article440.36 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

79
checked on Feb 10, 2021

Page view(s)

143
checked on Mar 27, 2024

Download(s)

26
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric