Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/570
DC FieldValueLanguage
dc.contributor.authorallFeuillet, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallNostro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallChiarabba, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2005-11-25T10:37:30Zen
dc.date.available2005-11-25T10:37:30Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/570en
dc.description.abstractWe study a seismic swarm that occurred in 1989–1990 at the Alban Hills volcano and interpret the seismicity pattern in terms of Coulomb stress changes caused by magma intrusion in a local volcanic source and the extensional tectonic stress field. We first image the three-dimensional (3-D) structure of the volcano through a tomographic inversion of P waves and S-P arrival times recorded by a temporary local network. A high Vp and Vp/Vs body exists beneath the area of most recent volcanic activity, which we interpret as a solidified magma body delimiting the position of the volcanic source. We have relocated 661 events (M 4.0) using this 3-D velocity model and we have computed 64 fault plane solutions. Elevation changes, measured between 1951 and 1994 along a 33-km-long line crossing the western part of the volcano, reveal an uplift of 0.3 m. We model these data to constrain the position and geometry of the volcanic source. We compute the vertical deformation in a homogeneous half-space, testing different volcanic sources (spherical magma chamber, sill and dike). We model the Coulomb stress changes caused by the local volcanic source and the regional tectonic stress field. The inflation of magma generates an increase of Coulomb stress larger than 0.5 MPa in the area where the seismicity is located. More than 85% of fault plane solutions are consistent with the stress perturbations induced by the volcanic source. We conclude that microearthquakes at the Alban Hills are promoted by elastic stress changes caused by volcanic unrest episodes.en
dc.format.extent5576701 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofJOURNAL OF GEOPHYSICAL RESEARCHen
dc.relation.ispartofseries/109(2004)en
dc.subjectseismic swarm,en
dc.subjectstatic stress transferen
dc.titleCoupling between earthquake swarms and volcanic unrest at the Alban Hills Volcano (central Italy) modeled through elastic stress transferen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber(B02308)en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.05. Stressen
dc.identifier.doidoi:10.1029/2003JB002419en
dc.relation.referencesReferences Amato, A., and C. Chiarabba (1995), Recent uplift of the Alban Hills volcano (Italy): Evidence for magmatic inflation?, Geophys. Res. Lett., 22, 1985–1988. Amato, A., C. Chiarabba, C. Cocco, M. Di Bona, and G. Selvaggi (1994), The 1989– 1990 seismic swarm in the Alban Hills volcanic area, central Italy, J. Volcanol. Geotherm. Res., 61, 225– 237. Beeler, N. M., R. W. Simpson, D. A. Lockner, and S. H. Hickman (2000), Pore fluid pressure, apparent friction and Coulomb failure, J. Geophys. Res., 105, 25,533– 25,554. Cayol, V., J. H. Dieterich, A. T. Okamura, and A. Miklius (2000), High magma storage rates before the 1983 eruption of Kilauea, Hawaii, Science, 288, 2343– 2346. Chiarabba, C., L. Malagnini, and A. Amato (1994), Tree-dimensional velocity structure and earthquake relocation in the Alban Hills Volcano, central Italy, Bull. Seismol. Soc. Am., 84, 295– 306. Chiarabba, C., A. Amato, and P. T. Delaney (1997), Crustal structure, evolution, and volcanic unrest of the Alban Hills, Central Italy, Bull. Volcanol., 59, 161– 170. Cimini, G. B., C. Chiarabba, A. Amato, and H. M. Iyer (1994), Large teleseismic P-wave residuals variation in the Alban Hills volcano, central Italy, Ann. Geofis., 37, 969– 988. Cocco, M., and J. R. Rice (2002), Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res., 107(B2), 2030, doi:10.1029/2000JB000138. Eberhart-Phillips, D. (1993), Local earthquake tomography: Earthquake source regions, in Seismic Tomography: Theory and Practice, edited by H. M. Iyer and K. Hirahara, pp. 613– 643, Chapman and Hall, New York. Eberhart-Phillips, D., and M. Reyners (1997), Continental subduction and three-dimensional crustal structure: The northern South Island, New Zealand, J. Geophys. Res., 102, 11,843–11,861. Feigl, K. L., J. Gasperi, F. Sigmundsson, and A. Rigo (2000), Crustal deformation near Hengill volcano, Iceland 1993 – 1998: Coupling between magmatic activity and faulting inferred from elastic modeling of satellite radar interferograms, J. Geophys. Res., 105, 25,655–25,670. Foulger, G. R., A. D. Miller, and B. R. Julian (1995), Three-dimensional vp and vp/vs structure of the Hengill triple junction and geothermal area, Iceland, and the repeatability of tomographic inversion, Geophys. Res. Lett., 22, 1309– 1312. Harris, R. A. (1998), Introduction to special session: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res., 103, 24,347–24,358. Jacques, E., G. C. P. King, P. Tapponnier, J. C. Ruegg, and I. Manighetti (1996), Seismic triggering by stress change after the 1978 events in the Asal Rift, Djibouti, Geophys. Res. Lett., 23, 2481– 2484. King, G. P. C., and M. Cocco (2000), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys., 44, 1– 38. Marra, F., C. Freda, P. Scarlato, J. Taddeucci, D. B. Karner, P. R. Renne, M. Gaeta, D. M. Palladino, R. Trigila, and G. Cavarretta (2003), Postcaldera activity in the Alban Hills volcanic district (Italy): 40AR/39Ar geochronology and insights into magma evolution, Bull. Volcanol., 65, 227– 247. Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, Int. Geophys. Ser., vol. 45, 285 pp., Academic, San Diego, Calif. Mogi, K. (1958), Relations between eruptions of various volcanoes and the deformation of the ground surface around them, Bull. Earthquake Res. Inst. Univ. Tokio, 36, 99– 134. Montone, P., A. Amato, and S. Pondrelli (1999), Active stress map of Italy, J. Geophys. Res., 104, 25,595– 25,610. Nostro, C., M. Cocco, and M. E. Belardinelli (1997), Static stress changes in extensional regimes: An application to southern Apennines (Italy), Bull. Seismol. Soc. Am., 87, 234–248. Nostro, C., R. S. Stein, M. Cocco, M. E. Belardinelli, and W. Marzocchi (1998), Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer, J. Geophys. Res., 103, 24,487– 24,504. Nostro, C., D. Baumont, O. Scotti, and M. Cocco (2002), ‘‘Farfalle’’ computer code: User’s manual, report of EC project ‘‘PRESAP’’ (Towards Practical, Real-Time Estimation of Spatial Aftershock Probabilities: A feasibility study in earthquake hazard, EVK4-1999-00001), Univ. of Ulster, Coleraine, Northern Ireland. (Available at www.errigal.ulst.ac.uk/) Okada, Y. (1985), Surface deformation due to shear, and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135– 1154. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040. Patane`, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi (2002), Tomographic images and 3D earthquake location of seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dike intrusion, Geophys. Res. Lett, 29, 136– 139. Quattrocchi, F., and M. Calcara (1995), Emanazioni gassose nell’area di ciampino (2/11/95) ed evento sismica nei Colli Albani (3/11/95), Ist. Naz. Geofis., Relazione d’Intervento, Gruppo Geochim. Fluidi, Ist. Naz. di Geofis. E Vulcanol., Rome. Reasenberg, P., and D. Oppenheimer (1985), FPFIT, FPPLOT and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions, U.S. Geol. Surv. Open File Rep., 85– 739. Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14, 227–241. Savage, J. C., and M. M. Clark (1982), Magmatic resurgence in Long Valley caldera, California: Possible cause of the 1980 Mammoth Lakes earthquakes, Sciences, 217, 531– 533. Selvaggi, G., and F. D’Ajello Caracciolo (1998), Seismic deformation at the Alban Hills volcano during the 1989– 1990 seismic sequence, Ann. Geofis., 41, 225– 231. Sigmundsson, F., P. Einarsson, S. T. Ro¨gnvaldsson, G. R. Foulger, K. M. Hodgkinson, and G. Thorbergsson (1997), The 1994– 1995 seismicity and deformation at the Hengill triple junction, Iceland: Triggering of earthquakes by minor magma injection in a zone of horizontal shear stress, J. Geophys. Res., 102, 15,151–15,161. Toda, S., R. S. Stein, and T. Sagiya (2002), Evidence from the AD 2000 Izu Islands earthquake swarm that stressing rate governs seismicity, Nature, 419, 58– 61. Toomey, D. R., and G. R. Foulger (1989), Tomographic inversion of local earthquakes data from the Hengill-Grendsalur Central Volcano Complex, Iceland, J. Geophys. Res., 94, 17,497– 17,510.en
dc.description.fulltextreserveden
dc.contributor.authorFeuillet, N.en
dc.contributor.authorNostro, C.en
dc.contributor.authorChiarabba, C.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-6497-817X-
crisitem.author.orcid0000-0002-2962-9414-
crisitem.author.orcid0000-0002-8111-3466-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Article published / in press
Manuscripts
Files in This Item:
File Description SizeFormat Existing users please Login
Nostro 2003JB002419.pdf5.45 MBAdobe PDF
Show simple item record

Page view(s) 50

245
checked on Apr 20, 2024

Download(s)

30
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric