Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5611
DC FieldValueLanguage
dc.contributor.authorallMontegrossi, G.; CNR-IGG Firenzeen
dc.contributor.authorallCantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBicocchi, G.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)en
dc.contributor.authorallVaselli, O.; Department of Earth Science Via La Pira 4, 50121 Florence (Italy)en
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-14T14:29:36Zen
dc.date.available2010-01-14T14:29:36Zen
dc.date.issued2009-09en
dc.identifier.urihttp://hdl.handle.net/2122/5611en
dc.description.abstractCO2 Capture & Storage (CCS) in saline aquifer is one of the most promising technologies for reducing anthropogenic emission of CO2. Feasibility studies for CO2 geo-sequestration in Italy have increased in the last few years. Before planning a CCS plant an appropriate precision and accuracy in the prediction of the reservoir evolution during injection, in terms of both geochemical calculation and fluid flow properties, is demanded. In this work a geochemical model will be presented for an offshore well in the Tyrrhenian Sea where the injection of 1.5 million ton/year of CO2 is planned. The dimension of the trapping structure requires to study an area of about 100 km2 and 4 km deep. Consequently, three different simulations were performed by means of TOUGHREACT code with Equation Of State module ECO2N. The first simulation is a stratigraphic column with a size of 110*110*4,000 meters and a metric resolution in the injection/cap-rock area (total of 8,470 elements), performed in order to asses the geochemical evolution of the cap-rock and to ensure the sealing of the system. The second simulation is at large scale in order to assess the CO2 path from the injection towards the spill point (total of about 154,000 elements). During this simulation, the effect of the full coupling of chemistry with fluid flow and a relevant effect in the expected CO2 diffusion velocity was recognized. Owing to the effect of chemical reaction and coupling terms (porosity/permeability variation with mineral dissolution/precipitation), the diffusion velocity results to be 20% slower than in a pure fluid flow simulation. In order to give a better picture of this 'barrier' effect, where the diffusion of the CO2-rich acidic water into the carbonate reservoir originates a complex precipitation/dissolution area, a small volume simulation with a 0.1 m grid was elapsed. This effect may potentially i) have a big impact on CO2 sequestration due to the reduction of available storage volume reached by the CO2 plume in 20 years and/or the enhanced injection pressure and ii) outline the relevance of a full geochemical simulation in an accurate prediction of the reservoir properties.en
dc.language.isoEnglishen
dc.relation.ispartofPROCEEDINGS, TOUGH Symposium 2009en
dc.subjectreactive transport modelingen
dc.subjectCO2 storageen
dc.titleBARRIER EFFECT IN CO2 CAPTURE AND STORAGE FEASIBILITY STUDYen
dc.typeExtended abstracten
dc.description.statusPublisheden
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modelingen
dc.description.ConferenceLocationLawrence Berkeley National Laboratory, Berkeley, Californiaen
dc.relation.referencesCalore C., R. Celati, P. Squarci, L. Taffi, Temperature map of Italy at 1000, 2000 and 3000 m, Intl. Inst. for Geothermal Research-CNR, Pisa, 1988. Cantucci, B., G. Montegrossi, O. Vaselli, F. Tassi, F. Quattrocchi, and E.H. Perkins, Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study, Chemical Geology, 265, Issues 1-2, 181-197, 2009 Clauser C. & Huenges E., Thermal Conductivity of Rocks and Minerals, Chapter 3 of A Handbook of Physical Constants. AGU Ref. Shelf 3, 1995 Corey, A.T. The Interrelation Between Gas and Oil Relative Permeabilities, Producers Monthly, 38-41, November 1954. Frank M.J.W., Kuipers J.A.M., Van Swaaij W.P.M., Diffusion Coefficients and viscosities of CO2+H2O, CO2+CH3OH, NH3+H2O, and NH3+CH3OH Liquid Mixtures, J. Chem. Eng. Data, 41, 297-302, 1996. Hashimoto S. and Suzuki M., Vertical distribution of carbon dioxide diffusion coefficients and production rates in forest soils, Soil. Sci.Soc.Am.J., 66, 1151-1158, 2002. Kuhn M., and W.-H. Chiang, Processing Shemat, Ver. 4.0.0, SHEMAT Ver. 8.0, J. Bartels, C. Clauser, M. Kuhn, D. Mottaghy, V. Rath, R. Wagner & A. Wolf, Springer-Verlag, Berlin, Heidelberg, 2003. Johnson, J.W., E.H. Oelkers, H.C. Helgeson, SUPCRT 92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000 °C. Comput. Geosci. 18, 899-947, 1992.. Lutterotti, L., S. Matthies, H-R. Wenk, MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more, Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12), 1, 159, 1999. Montegrossi, G., B. Cantucci, O. Vaselli, and F. Quattrocchi, Reconstruction of porosity profile in an off-shore well, Bollettino di Geofisica Teorica ed Applicata, 49 (2), 408-410, 2008. Palandri, J., Y.K. Kharaka, A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modelling, US Geol Surv. Open File Report 2004-1068, 2004, p. 64. Palmer, B.J, Calculation of thermal-diffusion coefficients from plane-wave fluctuations in the heat energy density, Physical Review E, 49 (3), 2049-2057, 1994. Parkhurst, D.L., C.A.J. Appelo, User's guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259, pp. 312, 1999. Singh T.N., Sinha S., Singh V.K., Prediction of thermal conductivity of rock through physico-mechanical properties. Building and Environment, 42, 146–155, 2007 Spycher, N., K. Pruess, CO2–H2O mixtures in the geological sequestration of CO2 center dot. II. Partitioning in chloride brines at 12–100 °C and up to 600 bar, Geochim. Cosmochim. Acta 69 (13), 3309–3320, 2005. Steefel, C.I, A.C. Lasaga, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system, Am. J. Sci.; 294:529–92, 1994. Tamini, A., Rinker, B., Sandall, O.C., Diffusion Coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in water over the Temperature Range 293-368 K, J.Chem.Eng.Data, 39, 330-332, 1994 Verma, A. and K. Pruess, Thermohydrologic Conditions and Silica Redistribution Near High-Level Nuclear Wastes Emplaced in Saturated Geological Formations, J. of Geophys. Res.,Vol. 93, No. B2, pp. 1159-1173, 1988. Wang L.S., Lang Z.X., Guo T.M., Measurement and correlation of the diffusion coefficients of carbon dioxide in liquid hydrocarbon under elevated pressures, Fluid Phase Equilibria, 117, 364-372, 1996 Wolery, T.J., EQ3/6: Software package for geochemical modeling of aqueous systems: package overview and installationguide (version 7.2), Lawrence Livermore National Laboratory Report UCRL-MA-10662 PT I, Livermore, California, 1992. Xu, T., K. Pruess, Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1 Methodology, Am. J. Sci. 301, 16–33, 2001. Xu, T., E.L. Sonnenthal, N. Spycher, K. Pruess, TOURGHREACT: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media, Comput. Geosci. 32, 145–165, 2006.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.fulltextopenen
dc.contributor.authorMontegrossi, G.en
dc.contributor.authorCantucci, B.en
dc.contributor.authorBicocchi, G.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorQuattrocchi, F.en
dc.contributor.departmentCNR-IGG Firenzeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Science Via La Pira 4, 50121 Florence (Italy)en
dc.contributor.departmentDepartment of Earth Science Via La Pira 4, 50121 Florence (Italy)en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypeExtended abstract-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCNR-Institute of Geosciences and Earth Resources-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth Sciences, University of Firenze, 50121 Firenze, Italy-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.orcid0000-0002-2006-6117-
crisitem.author.orcid0000-0001-7266-5106-
crisitem.author.orcid0000-0002-5553-9578-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
TOUGH_symposium_2009_Montegrossi.pdfextended abstract1.08 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

196
checked on Apr 17, 2024

Download(s) 50

255
checked on Apr 17, 2024

Google ScholarTM

Check