Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5575
DC FieldValueLanguage
dc.contributor.authorallCantucci, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMontegrossi, G.; CNR-IGG Firenzeen
dc.contributor.authorallVaselli, O.; Dip.Scienze della Terra Firenzeen
dc.contributor.authorallPizzino, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2010-01-13T14:35:06Zen
dc.date.available2010-01-13T14:35:06Zen
dc.date.issued2006-03-22en
dc.identifier.urihttp://hdl.handle.net/2122/5575en
dc.description.abstractEnCana’s CO2 injection EOR project at Weyburn (Saskatchewan, Canada) is the focal point of a multi-faceted research program, sponsored by IEA GHG R&D and numerous international industrial and government partners including the European Community (BGS, BRGM, INGV and GEUS research providers), to find co-optimization of “CO2-EOR Production” and “CO2 -Geological Storage”, addressed to environmental purposes, in the frame of the Kyoto Agreement Policies. The Weyburn oil-pull is recovered from Midale Beds (at the depth of 1300-1500 m). This formation consists of Mississipian shallow marine carbonate-evaporites that can be subdivided into two units: i) the dolomitic “Marly” and ii) the underlying calcitic “Vuggy”, sealed by an anhydrite cap. Presently, around 3 billions mc of supercritical CO2 have been injected into the “Phase A1”injection area that includes around 90 oil producers, 30 water injectors and 30 CO2 injection wells, build up since September 2000. INGV has carried out a geochemical monitoring programme -approximately thrice yearly from pre-injection (“Baseline” trip, August 2000) to September 2004- performing trace element and dissolved gas analysis along with fluids sampling surveys, the latter being performed by the Canadian partners. The experimental data are the base of a geochemical modelling, i.e. the main goal of the present study. In the past, assumptions and gap-acceptance have been made in the literature in the frame of the geochemical modelling of CO2 geological storage, in order to reconstruct the reservoir conditions (pressure, pH and boundary conditions). As these parameters of deep fluids cannot be measured in-situ, all this information must be computed by a a posteriori procedure involving the analytical data. In this work we proposed an approach to geochemical modeling in order to:: i) reconstruct the in-situ reservoir chemical composition (including pH) and ii) evaluate the boundary conditions (e.g. pCO2, pH2S), necessary to implement the reaction path modelling. This is the starting point to assess the geochemical impact of CO2 into the oil reservoir and, as main target, to quantify water-gas-rock reactions. Our geochemical modelling procedure is based on the available data such as: a) bulk mineralogy of the Marly and Vuggy zones; b) average gas-cap composition and c) pre-and post-CO2 injection selected water samples from Midale Beds. The PRHEEQC (V2.11) Software Package was used to reconstruct the in-situ reservoir composition by calculating the chemical equilibrium among the various phases at reservoir temperature (60°C) and pressure (150 bars) conditions by suitable thermodynamic corrections to code database. Then, we identified possible compositions of the initially reservoir liquid phases, always taking into account the case histories of the Marly and Vuggy units. The inverse modelling simulation (IMS) was then performed in order to calculate the amounts of mass transfer of liquid, gas and solid phases that accounted for changes in the water chemistry between the 2000 and 2003 data-sets. IMS calculations suggest that the reservoir underwent mineralogical changes, such as precipitation of chalcedony, gypsum and kaolinite and dissolution of anhydrite and k-feldspar. Calcite dissolution is predicted, but the precipitation of others carbonates (dolomite, dawsonite and siderite) can also occur. Finally, we modelled the geochemical impact of CO2 injection on Weyburn reservoir subjected to both local equilibrium and kinetically controlled reactions. All experimental data and thermo-kinetic modeling of the evolution of the CO2-rich Weyburn brine interacting with host rock minerals performed over 100 years after injection confirm that “solubility trapping” is prevailing in this early stage of CO2 injection. Further and detailed studies on the evolution of the CO2-rich Weyburn brine is one of main aims of this study in the framework of a PhD programme between the INGV of Rome and the Department of Earth Sciences of Florence.en
dc.language.isoEnglishen
dc.relation.ispartofCO2SC-Symposyum 2006en
dc.subjectgeochemical modelingen
dc.subjectWeyburn fielden
dc.titleTHERMO-KINETIC MODELING OF THE EVOLUTION OF THE CO2-RICH WEYBURN BRINES AT THE RESERVOIR INFERRED CONDITIONS (P, T, WATER-GAS CHEMISTRY): FIRST RESULTS OF A NEW APPROACHen
dc.typeExtended abstracten
dc.description.statusPublisheden
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modelingen
dc.description.ConferenceLocationBerkeley, California (USA)en
dc.relation.referencesBusenberg, E., and Plummer, L. N., The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65°C and 0 to 1 atm P(CO2), Am. J. Sci., 282, 45-78, 1982. Dove, P. M. ,and Czank, C. A., Crystal chemical controls on the dissolution kinetics of the isostructural sulfates; celestite, anglesite and barite, Geochim. Cosmochim. Acta, 59,1907-1915, 1995. Duan, Z., Moller, N., Weare, J.H., An equation of state fpr the CH4-CO2-H2O system: 1. Pure systems from 0° to 1000°C and 0 to 8000 bar, Geochimica et Cosmochimica acta, 56, 2605-2617, 1992. Duan, Z., and Sun, R., An improved model calculating CO2 solubility in pure water and aqueus NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical Geology, 193, 257-271, 2003. Ganor, J., Mogollón, J. L., and Lasaga, A. C., The effect of pH on kaolinite dissolution rates and on activation energy, Geochim. Cosmochim. Acta, 59, 1037-1052, 1995. Incenhower, J. P., and Dove, P. M., The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochim. Cosmochim. Acta, 64, 4193-4203, 2000. Jeschke, A. A., Vosbeck, K., and Dreybrodt, W., Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim. Cosmochim. Acta, 65, 27-34, 2001 Johnson, J. W., Nitao, J. J., Steefel, C. I., and Knauss, K. G., Reactive transport modelling of geologic CO2 sequestration in saline aquifers: the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration. First National Conference on Carbon Sequestration. May 14-17, 2001, Washington, D.C. McKibben, M. A. and Barnes, H. L., Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures, Geochim. Cosmochim. Acta, 50, 1509-1520, 1986. Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., The kinetics of calcite dissolution in CO2-water systems at 5-60 C and 0. 0-1.0 atm CO2, American Journal of Science, 278, 179-216, 1978. Sherman, L.A., and Barak, P., Solubility and dissolution kinetics of dolomite in Ca-Mg-HCO3/CO3 solutions at 25°C and 0.1 MPa carbon dioxide, Soil Sci. Soc. Am. J., 64, 1959-1968, 2000. Sverdrup, H. The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press, Lund, Sweden, 1990.en
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.fulltextopenen
dc.contributor.authorCantucci, B.en
dc.contributor.authorMontegrossi, G.en
dc.contributor.authorVaselli, O.en
dc.contributor.authorPizzino, L.en
dc.contributor.authorQuattrocchi, F.en
dc.contributor.authorVoltattorni, N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentCNR-IGG Firenzeen
dc.contributor.departmentDip.Scienze della Terra Firenzeen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypeExtended abstract-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCNR-Institute of Geosciences and Earth Resources-
crisitem.author.deptEarth Science Dept., University of Florence, Via La Pira 4, Florence, 50121, Italy; (3) CNR - IGG, Via La Pira 4, Florence, 50121, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-7266-5106-
crisitem.author.orcid0000-0002-2006-6117-
crisitem.author.orcid0000-0002-1062-2757-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
estended Berkeley abstract.docextended abstract83.5 kBMicrosoft WordView/Open
Show simple item record

Page view(s)

140
checked on Mar 27, 2024

Download(s) 50

132
checked on Mar 27, 2024

Google ScholarTM

Check