Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/555
DC FieldValueLanguage
dc.contributor.authorallDi Giovambattista, R.; a Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.authorallTyupkin, Yu. S.; Geophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federationen
dc.date.accessioned2005-11-24T11:28:23Zen
dc.date.available2005-11-24T11:28:23Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/555en
dc.description.abstractSeismic quiescence and accelerating seismic energy release are considered as possible spatio-temporal patterns of the preparation process of the 6 September 2002 Palermo, Italy, earthquake (M 5.8). The detailed properties of the quiescence are analyzed applying the RTL algorithm. The RTL algorithm is based on the analysis of the RTL prognostic parameter, which is designed in such a way that it has a negative value if, in comparison with long-term background, there is a deficiency of events in the time–space vicinity of the tested point. The RTL parameter increases if activation of seismicity takes place. The RTL algorithm identified that a seismic quiescence started from the beginning of November 2001 and reached its minimum at the end of May 2002. The Palermo 2002 earthquake occurred 2 months after the RTL parameter restored its long-term background level. The application of a log-periodic time-to-failure model gives a ‘‘predicted’’ (in retrospect) magnitude M= 6.2 main shock on 5 May 2002.en
dc.format.extent777102 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofTectonophysicsen
dc.relation.ispartofseries/384(2004)en
dc.subjectSeismicityen
dc.subjectSeismic quiescence;en
dc.titleSeismicity patterns before the M=5.8 2002, Palermo (Italy)earthquake: seismic quiescence and accelerating seismicityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber(243-255)en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.identifier.doidoi:10.1016/j.tecto.2004.04.001en
dc.relation.referencesBoschi, E., Guidoboni, E., Ferrari, G., Valensise, G., Gasperini, P., 1997. Catalogue of Strong Italian Earthquakes, 461 B.C. to 1990, ING-SGA, Bologna 644 pp. and CD-ROM. Bowman, D.D., Ouillon, G., Sammis, C.G., Sornette A., Sornette D., 1998. An observational test of the critical earthquake concept. J. Geophys. Res., 103, 24, 359-24, 372. Brehm, D.J., Braile, L.W., 1999. Intermediate-term earthquake prediction using the modified time-to-failure method in South California. Bull. Seismol. Soc. Am. 89, 275– 293. Bufe, C.G., Varnes, J.D., 1990. Time-to-failure analysis of seismicity preceding the 1989 Loma Prieta earthquake. Open-File Rep. U.S. Geol. Surv. 90-666 (18 pp.). Bufe, C.G., Varnes, J.D., 1993. Predictive modelling of the seismic cycle of the Greater San Francisco Bay Region. J. Geophys. Res. 98, 9871–9883. Di Giovambattista, R., Tyupkin, Yu. S., 2000. Spatial and temporal distribution of seismicity before the Umbria– Marche September 26, 1997 earthquakes. J. Seismol. 4, 589–598. Di Giovambattista, R., Tyupkin, Yu. S., 2001. An analysis of the process of acceleration of seismic energy emission in laboratory experiments on destruction of rocks and before strong earthquakes on Kamchatka and in Italy. Tectonophysics 338, 339– 351. Doglioni, C., 1991. A proposal for the kinematic modelling of Wdipping subductions—possible applications to the Tyrrhenian Apennines system. Terra Nova 3, 423– 434. Gabrielov, A.M., Dmitrieva, O.D., Keilis-Borok, V.I., (1986) Longterm prediction of earthquakes. Moscow, IPhE, Ac. Sci. USSR (125 pp., in Russian) Hainzl, S., Zo¨ ller, G., Kurths, J., 1999. Self-organized criticality model for earthquakes: quiescence, foreshocks, and aftershocks. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9, 2249– 2255. Hainzl, S., Zo¨ ller, G., Kurths, J., Zschau, J., 2000. Seismic quiescence as an indicator for large earthquakes in a system of selforganized criticality. Geophys. Res. Lett. 27, 597– 600. Huang, Q., Nagao, T., 2002. Seismic quiescence before the 2000 M= 7.3 Tottori earthquake. Geophys. Res. Lett. 29 (12), 19-1– 19-3. Huang, Q., Sobolev, G.A., 2001. Seismic quiescence prior to the 2000 M= 6.8 Nemuro Peninsula earthquake. Proc. Jpn. Acad. 77B, 1– 6. Huang, Q., Sobolev, G.A., Nagao, T., 2001. Characteristics of the seismic quiescence and activation patterns before the M= 7.2 Kobe earthquake. Tectonophysics 337, 99– 116. Huang, Q., Oncel, A.O., Sobolev, G.A., 2002. Precursory seismicity changes associated with the Mw= 7.4 1999 August 17 Izmit (Turkey) earthquake. Geophys. J. Int. 151, 235– 242. Jaume´, S.C., Sykes, L.R., 1999. Evolving towards a critical point: a review of accelerating seismic moment/energy release prior to large and great earthquakes. Pageoph 155, 279–306. Imoto, M., 1991. Changes in the magnitude– frequency b-value prior to large (Mz6.0) earthquakes in Japan. Tectonophysics 1993, 311 –325. Kossobokov, V.G., Keilis-Borok, V.I., 1990. Localization of intermediate- term earthquake prediction. J. Geophys. Res., B. 95 (12), 763–772. Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian Sea and shortening in the Apennines as results of arc migration driven by sinking of the lithosphere. Tectonics 5, 227– 245. Mogi, K., 1979. Two kinds of seismic gaps. Pageoph 117, 1172–1186. Molchan, G., Dmitrieva, O., 1991. Identification of aftershocks: review and new approaches. Comput. Seismol. 24, 19– 24 (in Russian). Newman,W.I., Turcotte, D.L., Gabrielov, A.M., 1995. Log-periodic behaviour of hierarchical failure model with applications to precursory seismic activation. Phys. Rev., E 52, 4827–4835. Ponomarev, A.V., Zavyalov, A.D., Smirnov, V.B., Lockner, D.A., 1997. Physical modelling of the formation and evolution of seismically active fault zones. Tectonophysics 277, 57– 81. Royden, L., Patacca, E., Scandone, P., 1987. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology 15, 714–717. Sholtz, C.H., 1968. The frequency– magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 58, 399– 415. Sobolev, G.A., Tyupkin, Yu. S., 1996. New method of intermediateterm earthquake prediction. Seismology in Europe. ESC, Reykjavik, p. 229. Sobolev, G.A., Tyupkin, Yu.S., 1997. Low-seismicity precursors of large earthquakes on Kamchatka. Vulkanol. Sejsmol. 4, 64– 74 (in Russian, translation in English: 1997, Volc. Seis., 18, 433–446). Sobolev, G.A., Tyupkin, Yu.S., 1999. Precursory phases, seismicity precursors, and earthquake prediction in Kamchatka. Vulkanol. Sejsmol. 6, 17– 26 (in Russian, translation in English: Volc. Seis., 20, 615– 627). Sobolev, G.A., Tyupkin, Yu.S., 2000. An analysis of the seismic energy emission process during formation of the main rupture in laboratory experiments on destruction of rocks and before large earthquakes. Fiz. Zemli N2, 44–55 (in Russian). Sobolev, G.A., Tyupkin, Yu.S., Zavialov, A., 1997. Map of Expectation Earthquakes Algorithm and RTL Prognostic Parameter: Joint Application. The 29th General Assembly of IASPEI, Thessaloniki, Greece, Abstracts, 77. Sornette, D., Sammis, C.G., 1995. Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions. J. Phys. I. France 5, 607– 619. Tyupkin, Yu.S., 2001. Self-similar seismicity structure effects in foreshock and aftershock processes. Vychislitel’naya seismologiya (Computational Seismology) 32, 190– 201 (in Russian). Valensise, G., Pantosti, D., 2001. The investigation of potential earthquake sources in peninsular Italy: a review. J. Seismol. 5, 287– 306. Varnes, D.J., 1989. Predicting earthquakes by analyzing accelerating precursory seismic activity. Pageoph 130, 661–686. Wiemer, S., 2001. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 72 (N.2), 373– 382. Wyss, M., 1973. Towards a physical understanding of the earthquake frequency distribution. J. R. Astron. Soc. 31, 341– 395. Wyss, M., 1997. Nomination of precursory seismic quiescence as a significant precursor. Pure Appl. Geophys. 149, 79–113. Wyss, M., Habermann, R.E., 1988. Precursory seismic quiescence. Pageoph 126, 319–332. Wyss, M., Martirosyan, A.H., 1998. Seismic quiescence before M7, 1988, Spitak earthquake, Armenia. Geophys. J. Int. 134, 329– 340. Zavyalov, A.D., 2003. Retrospective Testing of the MEE Algorithm for Western Turkey. Izv., Phys. Solid Earth 39, 898– 910. Zo¨ ller, G., Hainzl, S., 2002. A systematic spatio temporal test of the critical point hypothesis for large earthquakes. GRL 29 (11) (10.1029/2002GL014856). Zo¨ ller, G., Hainzl, S., Kurths, J., Zschau, J., 2002. A systematic test on precursory seismic quiescence in Armenia. Nat. Hazards 26, 245– 263.en
dc.description.fulltextreserveden
dc.contributor.authorDi Giovambattista, R.en
dc.contributor.authorTyupkin, Yu. S.en
dc.contributor.departmenta Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.contributor.departmentGeophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federationen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptGeophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federation-
crisitem.author.orcid0000-0001-5622-1396-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DiGiovambattista tectopalermo_2004.pdf758.89 kBAdobe PDF
Show simple item record

Page view(s)

122
checked on Apr 17, 2024

Download(s)

24
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric