Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5558
DC FieldValueLanguage
dc.contributor.authorallTramelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallFehler, M. C.; Massachusetts Institute of Technology Cambridge, Massachusetts USAen
dc.date.accessioned2010-01-13T13:54:38Zen
dc.date.available2010-01-13T13:54:38Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5558en
dc.description.abstractIn this article we apply a passive scattering-imaging method, derived from the method developed by Nishigami (1991) to data from the coda of the local volcano-tectonic (VT) earthquakes of Mt. Vesuvius. This method provides the space distribution of the strong scatterers together with a rough estimate of their strength. In the development of our method we use a realistic raytracing calculated with a raybending approach in the 3D velocity model of Mt. Vesuvius structure obtained with travel-time inversion. The inversion procedure adopted for the scattering imaging in the present study is based on the conjugate gradient method (CGM). The volume under study is divided into cubic cells with different dimensions in a multiscale approach. We obtain the best resolution (900 m cubic cell size) in the central part of the volume under study (roughly in a radius of 4 km centered in the crater) within a depth of 5 km. We analyzed the coda signals after filtering in two frequency bands, the first centered at 12 Hz and the second at 18 Hz, where most of the seismic energy is concentrated. Results show that most of the strong scatterers are located in the depth range between the surface and 3000 m below the sea level, in correspondence with the crater axis where most of the seismicity occurs. Part of the scatterers are located in the zones characterized by the maximum velocity contrasts.en
dc.language.isoEnglishen
dc.publisher.nameSEISMOLOGICAL SOC AMERen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries3/99 (2009)en
dc.subjectMt. Vesuviusen
dc.subjectscattering-imagingen
dc.title3D Scattering Image of Mt. Vesuviusen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1962–1972en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.identifier.doi10.1785/0120080273en
dc.relation.referencesAki, K., and V. Ferrazzini (2000). Seismic monitoring and modeling of an active volcano for prediction, J. Geophys. Res. 105, 16617–16640. Asano, Y., and A. Hasegawa (2004). Imaging the fault zones of the 2000 western Tottori earthquake by a new inversion method to estimate three-dimensional distribution of the scattering coefficient, J. Geophys. Res. 109, B06306. Auger, E., P. Gasparini, J. Virieux, and A. Zollo (2001). Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science 294, 1510–1512. Berryman, J. G. (1988). Seismic wave attenuation in fluid-saturated porous media, Pure Appl. Geophys. 128, 423–432. Berryman, J. G., P. A. Berge, and B. P. Bonner (2000). Transformation of seismic velocity data to extract porosity and saturation values for rocks, J. Acoust. Soc. Am. 107, 3018–3027. Bianco, F., P. Cusano, S. Petrosino, M. Castellano, C. Buonocunto, M. Capello, and E. Del Pezzo (2005). Small-aperture array for seismic monitoring of Mt. Vesuvius, Seism. Res. Lett. 76, no. 3, 345–355. Block, L. V. (1991). Joint hypocenter-velocity inversion of local earthquake arrival time data in two geothermal regions, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge. Bruno, P. P., G. Cippitelli, and A. Rapolla (1998). Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius, Italy, J. Volc. Geoth. Res. 84, 311–322. Capuano, P., P. Gasparini, A. Zollo, J. Virieux, R. Casale, and M. Yeroyanni (2003). The Internal Structure of Mt. Vesuvius, Liguori, Napoli. Chiodini, G., L. Marini, and M. Russo (2001). Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy, Geochim. Cosmochim. Acta 65, 2129–2147. De Natale, G., C. Troise, F. Pingue, G. Mastrolorenzo, and L. Pappalardo (2006). The Somma-Vesuvius volcano (southern Italy): Structure, dynamics, and hazard evaluation, Earth Sci. Rev. 74, 73–111. Del Pezzo, E., F. Bianco, and G. Saccorotti (2004). Seismic source dynamics at Vesuvius volcano, Italy, J. Volcanol. Geotherm. Res. 133, 23–39. Del Pezzo, E., F. Bianco, L. De Siena, and A. Zollo (2006a). Small scale shallow attenuation structure at Mt. Vesuvius, Phys. Earth Planet. Interiors 157, 257–268. Del Pezzo, E., F. Bianco, and L. Zaccarelli (2006b). Separation of Qi and Qs from passive data at Mt. Vesuvius: A reappraisal of the seismic attenuation estimates, Phys. Earth Planet. Interiors 159, 202–212. Fehler, M. C., H. Sato, and L. J. Huang (2000). Envelope broadening of outgoing waves in 2D random media: a comparison between the Markov approximation and numerical simulations, Bull. Seismol. Soc. Am. 90, 914–928. Finetti, I., and C. Morelli (1974). Esplorazione sismica a riflessione dei Golfi di Napoli e Pozzuoli (Italian), Boll. Geof. Teor. Appl. 16, 175–222. La Rocca, M., E. Del Pezzo, M. Simini, R. Scarpa, and G. De Luca (2001). Array analysis of seismograms for explosive sources: evidence for surface waves scattered at the main topographical features, Bull. Seismol. Soc. Am. 91, 219–231. Lomax, A., J. Virieux, P. Volant, and C. Berge (2000). Probabilistic earthquake location in 3D and layered models, Introduction of a Metropolis- Gibbs Method and Comparison with Linear Locations in Advances in Seismic Event Location, C. H. Thurber and N. Rabinowitz (Editors), Springer and Kluwer, Amsterdam. Nishigami, K. (1991). A new inversion method of coda waveforms to determine spatial distribution of coda scatterers in the crust and uppermost mantle, Geophys. Res. Lett. 12, no. 18, 2225–2228. Nishigami, K. (1997). Spatial distribution of coda scatterers in the crust around two active volcanoes and one active fault system in central Japan: Inversion analysis of coda envelope, Phys. Earth Planet. Inter. 104, 75–89. Nishigami, K. (2000). Deep crustal heterogenity along and around the San Andreas fault system in central California and its relation to the segmentation, J. Geophys. Res. 105, 7983–7998. Paige, C., and M. Saunders (1982). Algorithm 583; LSQR: Sparse linear equations and least-squares problems, TOMS 2, no. 8, 195–209. Revenaugh, J. (1995). A scattered-wave image of subduction beneath the Transverse Ranges, Science 268, 1888–92. Scarpa, R., F. Tronca, F. Bianco, and E. Del Pezzo (2002). High resolution velocity structure beneath Mount Vesuvius from seismic array data, Geophys. Res. Lett. 21, no. 29, 2040. Taira, T., and K. Yomogida (2003). Characteristic of small-scale heterogenities in the Hidaka, Japan, region estimated by coda envelope level, Bull. Seismol. Soc. Am. 93, no. 4, 1531–1541. Thurber, C. (1981). Earth structure and earthquake locations in the Cojote Lake area, central California, Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge. Tramelli, A., E. Del Pezzo, F. Bianco, and E. Boschi (2006). 3D scattering image of the Campi Flegrei caldera (southern Italy). New hints on the position of the old caldera rim, Phys. Earth Planet. Interiors 155, 269–280. Wegler, U. (2003). Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the TOMOVES active seismic experiment, J. Volcanol. Geotherm. Res. 128, 45–63. Wegler, U. (2004). Diffusion of seismic waves in a thick layer: Theory and application to Vesuvius volcano, J. Geophys. Res. 109, B07303. Wu, R. S., and K. Aki (1988). Introduction: Seismic wave scattering in threedimensionally heterogeneous Earth, Pure Appl. Geophys. 128, 1–6. Zollo, A., L. D’Auria, R. D. Matteis, A. Herrero, J. Virieux, and P. Gasparini (2002). Bayesian estimation of 2D P-velocity models from active seismic arrival time data: Imaging of the shallow structure of Mt Vesuvius (southern Italy), Geophys. J. Int. 151, 566–582. Zollo, A., P. Gasparini, J. Virieux, G. Biella, E. Boschi, P. Capuano, R. de Franco, P. dell’Aversana, R. de Matteis, G. De Natale, G. Iannaccone, I. Guerra, H. Le Meur, and L. Mirabile (1998). An image of Mt. Vesuvius obtained by 2D seismic tomography, J. Volcanol. Geotherm. Res. 82, 161–173.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTramelli, A.en
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorFehler, M. C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentMassachusetts Institute of Technology Cambridge, Massachusetts USAen
item.grantfulltextrestricted-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.classification.parent04. Solid Earth-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptMassachusetts Institute of Technology Cambridge, Massachusetts USA-
crisitem.author.orcid0000-0001-6259-5730-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
TraDel-09.pdf666.18 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

7
checked on Feb 10, 2021

Page view(s) 50

260
checked on May 22, 2024

Download(s)

35
checked on May 22, 2024

Google ScholarTM

Check

Altmetric