Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/554
DC FieldValueLanguage
dc.contributor.authorallTyupkin, Yu. S.; Geophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federationen
dc.contributor.authorallDi Giovambattista, R.; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
dc.date.accessioned2005-11-24T11:07:48Zen
dc.date.available2005-11-24T11:07:48Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/554en
dc.description.abstractA large earthquake preparation is often manifested in correlation of seismicity in an area whose characteristic dimension greatly exceeds a dimension of source of main shock. Zfller et al. [G. Zfller, S. Hainzl, J. Kurths, Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res. 106 (2001) 2167– 2176] show the growth of correlation length of earthquakes prior to nine large earthquakes in California according to a power low. We argue that the algorithm of correlation length estimation proposed by Zfller et al. [G. Zfller, S. Hainzl, J. Kurths, Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res. 106 (2001) 2167–2176] can result in a decrease of correlation length preceding its precursory growth before large earthquakes if the area in which earthquake activity is correlated grows with time during a main shock preparation. The correlation length analysis of acoustic emission events recorded in laboratory experiments on destruction of rocks and correlation length analysis of intermediate magnitude earthquakes in the area of large earthquakes preparation on Kamchatka and in Italy confirms the theoretical argument. This effect can be considered as an additional premonitory pattern of large earthquake preparation.en
dc.format.extent561258 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/230(2005)en
dc.subjectearthquake dynamics and mechanics;en
dc.subjectcorrelation lengthen
dc.titleCorrelation length as an indicator of critical point behavior prior to a large earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber(85-96)en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.identifier.doidoi:10.1016/j.epsl.2004.10.037en
dc.relation.references[1] G. Zfller, S. Hainzl, J. Kurths, Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes, J. Geophys. Res. 106 (2001) 2167– 2176. [2] V.I. Keilis-Borok, L.N. Malinovskaya, One regularity in the occurrence of strong earthquakes, J. Geophys. Res. 69 (1964) 3019– 3024. [3] V.I. Keilis-Borok, P.N. Shebalin (Eds.), Dynamics of Lithosphere and Earthquake Prediction, Phys. Earth Planet. Inter. 111 (1999) 179– 330. [4] V.I. Keilis-Borok, Earthquake prediction: state-of-the-art and emerging possibilities, Annu. Rev. Earth Planet. Sci. 30 (2002) 1 – 33. [5] M.A. Sadovsky, Randomness and instability in geophysical processes, Fiz. Zemli 2 (1989) 3– 12 (in Russian). [6] L. Knopoff, Self-organization and the development of pattern: implications for earthquake prediction, Am. Philos. Soc Proc. 137 (1993) 339– 349. [7] P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer-Verlag, New York, 1996, 212 pp. [8] D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, 1997, 385 pp. [9] D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, Springer Ser. Synerg., Heidelberg, Springer-Verlag, New York, 2000, 423 pp. [10] B.J. Rundle, D.L. Turcotte, W. Klein (Eds.), Geocomplexity and the Physics of Earthquakes, Am. Geophys. Union, Washington, DC, 2000, 284 pp. [11] V.G. Kossobokov, V.I. Keilis-Borok, D.L. Turcotte, B.D. Malamud, Implications of a statistical physics approach to earthquake hazard assessment and forecasting, Pure Appl. Geophys. 157 (2002) 2323– 2349. [12] A. Bruce, D. Wallace, Critical point phenomena: universal physics at large length scales, in: P. Davis (Ed.), The New Physics, Cambridge Univ. Press, New York, 1989, pp. 236– 267. [13] Yu.S. Tyupkin, Potential source of earthquake, Izvestiya, Phys. Solid Earth 38 (8) (2000) 669– 674. [14] Yu.S. Tyupkin, Dynamics of formation of potential source of earthquake, Izvestiya, Phys. Solid Earth 40 (2004) 198– 205. [15] Yu.S. Tyupkin, Potential source of earthquake formation: analogy with phase transition, Comput. Seismol. 35 (2004) 296– 311 (in Russian). [16] V. Zaliapin, V.I. Keilis-Borok, M. Ghil, A Boolean delay model of colliding cascades, prediction of critical transitions, J. Stat. Phys. 111 (3–4) (2003) 839– 861. [17] G.F. Pepke, J.M. Carlson, B.E. Shaw, Prediction of large events on a dynamical model of fault, J. Geophys. Res. 99 (1994) 6769– 6788. [18] A.M. Gabrielov, I.V. Zaliapin, W.I. Newman, V.I. Keilis- Borok, Colliding cascades model for earthquake prediction, Geophys. J. Int. 143 (2000) 427–437. [19] I. Zaliapin, Z. Liu, G. Zfller, V. Keilis-Borok, D. Turcotte, On increase of earthquake correlation length prior to large earthquakes in California, Comput. Seismol. 33 (2002) 141–161. [20] C. Frohlich, S.D. Davis, Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogs, Geophys. J. Int. 100 (1990) 19– 32. [21] V.I. Myachkin, B.V. Kostrov, G.A. Sobolev, O.G. Shamina, Foundation of physics of the source and precursors of earthquake, in: M. Nauka (Ed.), Physics of Earthquake Source, 1975, pp. 6 –29. [22] G.A. Sobolev, A.V. Ponomarev, Physics of Earthquakes and Precursors, Nauka, Moscow, 2003, 270 pp., (in Russian). [23] V.I. Keilis-Borok, I.M. Rotwine, T.V. Sidirenko, Intensification of aftershock sequence as a precursor of large earthquake, DAN SSSR 242 (3) (1978) 567– 569. [24] Yu.S. Tyupkin, The growth of intensity of aftershock sequences before strong earthquakes, Vulkanol. Seismol. 3 (2002) 38–48 (in Russian). [25] G.A. Sobolev, A.V. Ponomarev, Laboratory study of acoustic emission and a refracture stage, Vulkanol. Seismol. 4–5 (1999) 50– 62. Yu.S. Tyupkin, R. Di Giovambattista / Earth and Planetary Science Letters 230 (2005) 85–96 95 [26] X. Lei, How do asperities fracture? An experimental study of unbroken asperities, Earth Planet. Sci. Lett. 213 (2003) 347–359. [27] V.A. Lyakhovsky, Y. Ben-Zion, A. Agnon, Distributed damage, faulting and friction, J. Geophys. Res. 102 (1997) 27635–27649. [28] D.A. Lockner, J.D. Byerlee, V. Kuksenko, et al., Observation of quasistatic fault growth from acoustic emission, in: B. Evans, T.-F. Wong (Eds.), Fault Mechanics Transport Properties Rocks, Academic Press, London, 1992, pp. 3 –31. [29] R. Di Giovambattista, Yu.S. Tyupkin, Spatial and temporal distribution of seismicity before the Umbria-Marche September 26, 1997 earthquakes, J. Seismol. 4 (2000) 589–598. [30] R. Di Giovambattista, Yu.S. Tyupkin, Seismicity patterns before the M=5.8 2002, Palermo (Italy) earthquake: seismic quiescence and accelerating seismicity, Tectonophysics 384 (2004) 243– 255. [31] G. Molchan, O. Dmitrieva, Identification of aftershocks: review and new approaches, Comput. Seismol. 24 (1991) 19– 24 (in Russian). [32] G.A. Sobolev, Yu.S. Tyupkin, Low-seismicity precursors of large earthquakes on Kamchatka, Volcanol. Seismol. 18 (1997) 433– 446. [33] Yu.V. Riznichenko, Dimensionality of the source of crustal earthquake and the seismic moment, in: M. Nauka (Ed.), Physics of Earthquakes Researches, 1976, pp. 9 – 27 (in Russian). [34] G.C.P. King, D.D. Bowman, The evolution of regional seismicity between large earthquakes, J. Geophys. Res. 108 (B2) (2003) 2096. [35] D.D. Bowman, G. Ouillon, C.G. Sammis, A. Sornette, D. Sornettee, An observation test of the critical earthquake concept, JGR, NB 10 (1998) 24359– 24372.en
dc.description.fulltextreserveden
dc.contributor.authorTyupkin, Yu. S.en
dc.contributor.authorDi Giovambattista, R.en
dc.contributor.departmentGeophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federationen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGeophysical Center, RAS, Molodezhnaya 3, 117296 Moscow, Russian Federation-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0001-5622-1396-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Di Giovambattista Correlation length_2005.pdf548.1 kBAdobe PDF
Show simple item record

Page view(s)

142
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric