Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5400
DC FieldValueLanguage
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCaricchi, L.; Department of Earth Sciences, ETH Zurich, CH-8092 Zurich, Switzerlanden
dc.contributor.authorallBagdassarov, N.; Institut fu¨ r Geowissenschaften, Facheinheit Geophysik, Universita¨t Frankfurt, D-60438 Frankfurt, Germanyen
dc.date.accessioned2009-12-30T07:12:40Zen
dc.date.available2009-12-30T07:12:40Zen
dc.date.issued2009-03-18en
dc.identifier.urihttp://hdl.handle.net/2122/5400en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2009) American Geophysical Unionen
dc.description.abstractThis contribution presents a semiempirical model describing the effective relative viscosity of crystalbearing magmas as function of crystal fraction and strain rate. The model was applied to an extensive data set of magmatic suspensions and partially molten rocks providing a range of values for the fitting parameters that control the behavior of the relative viscosity curves as a function of the crystal fraction in an intermediate range of crystallinity (30–80 vol % crystals). The analysis of the results and of the materials used in the experiments allows for evaluating the physical meaning of the parameters of the proposed model. We show that the model, by varying the parameters within the ranges obtained during the fitting procedure, is able to describe satisfactory the effective relative viscosity as a function of crystal fraction and strain rate for suspensions having different geometrical characteristics of the suspended solid fraction.en
dc.language.isoEnglishen
dc.publisher.nameAGU and the Geochemical Societyen
dc.relation.ispartofGeochem. Geophys. Geosysten
dc.relation.ispartofseries3/10(2009)en
dc.subjectmeltsen
dc.subjectconcentrated suspensionsen
dc.subjectviscosityen
dc.subjectstrain rateen
dc.titleA model for the rheology of particle-bearing suspensions and partially molten rocksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ03010en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.05. Rheologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.identifier.doi10.1029/2008GC002138en
dc.relation.referencesArzi, A. (1978), Critical phenomena in the rheology of partially melted rocks, Tectonophysics, 44, 173 – 184, doi:10.1016/0040-1951(78)90069-0. Auer, F., H. Berkhemer, and G. Oehlschlegel (1981), Steady state creep of fine grain granite at partial melting, J. Geophys., 49, 89–92. Bagdassarov, N., and A. Dorfman (1998), Granite rheology: Magma flow and melt migration, J. Geol. Soc., 155, 863– 872, doi:10.1144/gsjgs.155.5.0863. Barnes, H. (1999), The yield stress–a review or ‘panta rei’– everything flows?, J. Non-Newtonian Fluid Mech., 81, 133– 178, doi:10.1016/S0377-0257(98)00094-9. Bercovici, D., Y. Ricard, and G. Schubert (2001), A two-phase model of compaction and damage: 1. General theory, J. Geophys. Res., 106(B5), 8887– 8906, doi:10.1029/ 2000JB900430. Caricchi, L., L. Burlini, P. Ulmer, T. Gerya, M. Vassalli, and P. Papale (2007), Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics, Earth Planet. Sci. Lett., 264, 402 –419, doi:10.1016/ j.epsl.2007.09.032. Caricchi, L., D. Giordano, L. Burlini, P. Ulmer, and C. Romano (2008), Rheological properties of magma from the 1538 eruption of Monte Nuovo (Phlegrean Fields, Italy): An experimental study, Chem.Geol., 256, 158–171, doi:10.1016/j.chemgeo. 2008.06.035. Champallier, R., M. Bystricky, and L. Arbaret (2008), Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 76 vol. % of crystals, Earth Planet. Sci. Lett., 267, 571–583, doi:10.1016/j.epsl.2007.11.065. Chong, J., E. Christiansen, and A. Baer (1971), Rheology of concentrated suspension, J. Appl. Polym. Sci., 15, 2007– 2021, doi:10.1002/app.1971.070150818. Costa, A. (2005), Viscosity of high crystal content melts: Dependence on solid fraction, Geophys. Res. Lett., 32, L22308, doi:10.1029/2005GL024303. Costa, A., O. Melnik, and R. Sparks (2007a), Controls of conduit geometry and wall rock elasticity on lava dome eruptions, Earth Planet. Sci. Lett., 260, 137–151, doi:10.1016/j.epsl.2007.05.024. Costa, A., O. Melnik, R. Sparks, and B. Voight (2007b), Control of magma flow in dykes on cyclic lava dome extrusion, Geophys. Res. Lett., 34, L02303, doi:10.1029/ 2006GL027466. Gibilaro, L. G. (2001), Fluidization-Dynamics, 256 pp., Butterworth-Heinemann, Oxford, U. K. Goetze, C. (1977), A brief summary of our present day understanding of the effect of volatiles and partial melt on the mechanical properties of the upper mantle, in High-Pressure Research: Applications in Geophysics, edited by M. H. Manghnani and S. Akimoto, pp. 3–23, Academic, New York. Gue´guen, Y., and V. Palcialuskas (1994), Introduction to the Physics of Rocks, 294 pp., Princeton Univ. Press, Princeton, N. J. Hess, K. U., and D. B. Dingwell (1996), Viscosities of hydrous leucogranite melts: A non-Arrhenian model, Am. Mineral., 81, 1297–1300. Hess, K., B. Cordonnier, Y. Lavalle´e, and D. B. Dingwell (2008), Viscous heating in rhyolite: An in situ experimental, Earth Planet. Sci. Lett., 275, 121 –126, doi:10.1016/ j.epsl.2008.08.014. Hirth, G., and D. L. Kohlstedt (1995), Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981–2001, doi:10.1029/94JB02128. Ji, S., and B. Xia (2002), Rheology of Polyphase Earth Materials, 300 pp., Polytech. Int. Press, Que´bec, Que., Canada. Kohlstedt, D. L., and M. E. Zimmerman (1996), Rheology of partially molten mantle rocks, Annu. Rev. Earth Planet. Sci., 24, 41–62, doi:10.1146/annurev.earth.24.1.41. Krieger, I., and T. Dougherty (1959), A mechanism for non- Newtonian flow in suspension of rigid spheres, Trans. Soc. Rheol., 3, 137–152, doi:10.1122/1.548848. Lejeune, A., and P. Richet (1995), Rheology of crystal-bearing silicate melts: An experimental study at high viscosity, J. Geophys. Res., 100, 4215–4229, doi:10.1029/94JB02985. Mavko, G., T. Mukerji, and J. Dvokin (1998), The Rock Physics Handbook, Tools for Seismic Analysis in Porous Media, 329 pp., Cambridge Univ. Press, Cambridge, U. K. McKenzie, D. (1984), The generation and compaction of partially molten rocks, J. Petrol., 25, 713–765. Melnik, O., and R. S. J. Sparks (1999), Nonlinear dynamics of lava dome extrusion, Nature, 402, 37–41, doi:10.1038/46950. Melnik, O., and R. S. J. Sparks (2005), Controls on conduit magma flow dynamics during lava dome building eruptions, J. Geophys. Res., 110, B02209, doi:10.1029/2004JB003183. Mueller, S., H. Mader, and E. Llewellin (2008), The influence of crystal shape on magma rheology, paper presented at IAVCEI General Assembly, Int. Assoc. of Volcanol. and Chem. of the Earth’s Inter., Reykjavı´k, Iceland, 18 –25 Aug. Pabst, W., E. Gregorova, and C. Berthold (2006), Particle shape and suspension rheology of short-fiber systems, J. Eur. Ceram. Soc., 26, 149 – 160, doi:10.1016/j.jeurceramsoc. 2004.10.016. Petford, N. (2003), Rheology of granitic magmas during ascent and emplacement, Annu. Rev. Earth Planet. Sci., 31, 399– 427, doi:10.1146/annurev.earth.31.100901.141352. Pinkerton, H., and R. Stevenson (1992), Methods of determining the rheological properties of magmas at sub-solidus temperatures, J. Volcanol. Geotherm. Res., 53, 47–66, doi:10.1016/0377-0273(92)90073-M. Renner, J., B. Evans, and G. Hirth (2000), On the rheologically critical melt fraction, Earth Planet. Sci. Lett., 181, 585–594, doi:10.1016/S0012-821X(00)00222-3. Reuss, A. (1929), Berechnung des Fliessgrenze von Mischkristallen auf Grund der Plastizita¨tsbedingung fu¨ r Einkristalle, Z. Angew. Math. Phys., 9, 49–58. Ricard, Y., D. Bercovici, and G. Schubert (2001), A two-phase model for compaction and damage: 2. Application to compaction, deformation, and the role of interface tension, J. Geophys. Res., 106, 8907–8924, doi:10.1029/2000JB900431. Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys., 3, 267–269. Rosenberg, C., and M. Handy (2005), Experimental deformation of partially melted granite revisited: Implications for the continental crust, J. Metamorph. Geol., 23, 19–28, doi:10.1111/j.1525-1314.2005.00555.x. Rushmer, T. (1995), An experimental deformation study of partially molten amphibolite: Application to low-melt fraction segregation, J. Geophys. Res., 100, 15,681–15,695, doi:10.1029/95JB00077. Rutter, E., and D. Neumann (1995), Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas, J. Geophys. Res., 100, 15,697–15,715, doi:10.1029/ 94JB03388. Scott, T., and D. L. Kohlstedt (2006), The effect of large melt fraction on the deformation behaviour of peridotite, Earth Planet. Sci. Lett., 246, 177 – 187, doi:10.1016/j.epsl. 2006.04.027. Shaw, H. (1963), Obsidian-HO viscosities at 1000 and 2000 bars in the temperature range 700 C to 900 C, J. Geophys. Res., 68, 6337–6343. Solomon, M., and D. Boger (1998), The rheology of aqueous dispersions of spindle-type colloidal hematite rods, J. Rheol., 42, 929–949, doi:10.1122/1.550961. Takeda, Y.-T., and M. Obata (2003), Some comments on the rheologically critical melt percentage, J. Struct. Geol., 25, 813–818, doi:10.1016/S0191-8141(02)00080-9. Thomas, D. (1965), Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci., 20, 267–277, doi:10.1016/0095-8522(65)90016-4. van der Molen, I., and M. Paterson (1979), Experimental deformation of partially melted granite, Contrib. Mineral. Petrol., 70, 299–318, doi:10.1007/BF00375359. van der Werff, J. C., and C. G. de Kruif (1989), Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear Rate, J. Rheol., 33, 421–454, doi:10.1122/1.550062. Vigneresse, J. C., P. Barbey, and M. Cuney (1996), Rheological transitions during partial melting and crystallization with application to felsic magma, J. Petrol., 37(6), 1579–1600, doi:10.1093/petrology/37.6.1579. Voigt, W. (1928), Lehrbuch der Kristallphysik, Teubner, Leipzig, Germany. Wildemuth, C., and M. Williams (1984), Viscosity of suspensions modeled with a shear-dependent maximum packing fraction, Rheol. Acta, 23, 627 – 635, doi:10.1007/ BF01438803. Yue, Y., C. Moisescu, G. Carl, and C. Russel (1999), The influence of suspended iso-and anisometric crystals on the flow behavior of fluoroapatite glass melts during extrusion, Phys. Chem. Glasses, 40, 243–247. Zhou, J. Z. Q., T. Fang, G. Luo, and P. H. T. Ulherr (1995), Yield stress and maximum packing fraction of concentrated suspensions, Rheol. Acta, 34, 544 – 561, doi:10.1007/ BF00712315. Geochemistry Geophysics Geosystems G3 costa et al.: rheology of particle-bearing suspensions 10.1029/2008GC002138 13en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCosta, A.en
dc.contributor.authorCaricchi, L.en
dc.contributor.authorBagdassarov, N.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, ETH Zurich, CH-8092 Zurich, Switzerlanden
dc.contributor.departmentInstitut fu¨ r Geowissenschaften, Facheinheit Geophysik, Universita¨t Frankfurt, D-60438 Frankfurt, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptInstitut fu¨ r Geowissenschaften, Facheinheit Geophysik, Universita¨t Frankfurt, D-60438 Frankfurt, Germany-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0001-9051-2621-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
coscar2009[1].pdf538.34 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

166
checked on Feb 7, 2021

Page view(s) 10

322
checked on Apr 17, 2024

Download(s)

24
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric