Please use this identifier to cite or link to this item:
Authors: Carlino, S.* 
Cubellis, E.* 
Marturano, A.* 
Title: The catastrophic 1883 earthquake at the island of Ischia (southern Italy): macroseismic data and the role of geological conditions
Issue Date: 2009
DOI: 10.1007/s11069-009-9367-2
Keywords: Ischia island
1883 Earthquake
Macroseismic data
Site effects
Subject Classification04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics 
04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology 
04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology 
04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk 
Abstract: This article presents the results of a detailed study of the effects of the 1883 earthquake, which occurred at the island of Ischia (Gulf of Naples) and produced the total destruction of buildings in the epicentral area (Casamicciola town). Despite the moderate magnitude, this event was characterised by very high intensities (Imax = XI degree MCS) mainly due to the shallow depth of the source. The study of the earthquake shows that the intensities, which decreased rapidly with distance, were affected by source directivity, according to the causative fault geometry and tectonic structures, while local amplification of damage was observed where soft soils outcrop. The attenuation of seismic intensity with distance was evaluated using the well-known relation of intensity versus epicentral distance (Blake’s method). The diverse gradients of attenuation, observed in different directions, were ascribed to the various geological features of the shallow crust of the island. In order to evaluate the role of geology in the damage level, we computed different attenuation models for stiff and soft soils outcropping on the island. A systematic local amplification of about 1 MCS degree associated to the presence of reworked tuffs was obtained. This study also shows the influence of geological conditions on the evaluation of macroseismic data and supplies useful elements to derive a predictive map of potential site effects.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
CarCub-09.pdf2.81 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Sep 24, 2018


checked on Sep 24, 2018

Google ScholarTM