Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5391
DC FieldValueLanguage
dc.contributor.authorallDi Giulio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCara, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLombardo, G.; University of Cataniaen
dc.contributor.authorallRigano, R..; University of Cataniaen
dc.date.accessioned2009-12-24T07:30:54Zen
dc.date.available2009-12-24T07:30:54Zen
dc.date.issued2009-10-10en
dc.identifier.urihttp://hdl.handle.net/2122/5391en
dc.description.abstractIn this paper we investigate ground motion properties in the western part of the Pernicana fault. This is the major fault of Mount Etna and drives the dynamic evolution of the area. In a previous work, Rigano et al. (2008) showed that a significant horizontal polarization characterizes ground motion in fault zones of Mount Etna, both during earthquakes and ambient vibrations. We have performed denser microtremor measurements in the NE rift segment and in intensely deformed zones of the Pernicana fault at Piano Pernicana. This study includes mapping of azimuth-dependent horizontal-to-vertical spectral ratios along and across the fault, frequency–wave number techniques applied to array data to investigate the nature of ambient vibrations, and polarization analysis through the conventional covariance matrix method. Our results indicate that microtremors are likely composed of volcanic tremor. Spectral ratios show strong directional resonances of horizontal components around 1 Hz when measurements enter the most damaged part of the fault zone. Their polarization directions show an abrupt change, by 20° to 40°, at close measurements between the northern and southern part of the fault zone. Recordings of local earthquakes at one site in the fault zone confirm the occurrence of polarization with the same angle found using volcanic tremor. We have also found that the directional effect is not time-dependent, at least at a seasonal scale. This observation and the similar behavior of volcanic tremors and earthquake-induced ground motions suggest that horizontal polarization is the effect of local fault properties. However, the 1-Hz resonant frequency cannot be reproduced using the 1-D vertically varying model inferred from the array data analysis, suggesting a role of lateral variations of the fault zone. Although the actual cause of polarization is unknown, a role of stress-induced anisotropy and microfracture orientation in the near-surface lavas of the Pernicana fault can be hypothesized consistently with the sharp rotation of the polarization angle within the damaged fault zone.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/114( 2009)en
dc.subjectPernicana fault, fault zone, volcanic tremor, polarization, directional resonanceen
dc.titleEvidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10308en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2009/2009JB006393.shtmlen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1029/2009JB006393en
dc.relation.referencesAcocella, V., and M. Neri (2005), Structural features of an active strike-slip fault on the slinding flank of Mt. Etna (Italy), J. Struct. Geol., 27, 343–355, doi:10.1016/j.jsg.2004.07.006.[CrossRef] Azzaro, R., M. Mattia, and G. Puglisi (2001), Dynamics of fault creep and kinematics of the eastern segment of the Pernicana fault (Mt. Etna, Sicily) derived from geodetic observations and their tectonic significance, Tectonophysics, 333(3–4), 401–415, doi:10.1016/S0040-1951(01)00021-X.[CrossRef] Barberi, F., L. Civetta, P. Gasparini, F. Innocenti, R. Scandone, and L. Villari (1974), Evolution of a section of the Africa-Europe plate boundary: Paleomagnetic and volcanological evidence from Sicily, Earth Planet. Sci. Lett., 22, 123–132, doi:10.1016/0012-821X(74)90072-7.[CrossRef] Becker, K., S. A. Shapiro, S. Stanchits, G. Dresen, and S. Vinciguerra (2007), Stress induced elastic anisotropy of the Etnean basalt: Theoretical and laboratory examination, Geophys. Res. Lett., 34, L11307, doi:10.1029/2007GL030013.[AGU] Ben-Zion, Y., Z. Peng, D. Okaya, L. Seeber, L. G. Armbruster, N. Ozer, A. J. Michael, S. Baris, and M. Aktar (2003), A shallow fault zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int., 152, 699–717, doi:10.1046/j.1365-246X.2003.01870.x.[CrossRef] Bianco, F., and M. Castellano (1997), The anisotropic volume of Mt. Etna: Possible relationship with the stress-field, Acta Vulcanol., 9(1/2), 31–35. Bianco, F., and L. Zaccarelli (2009), A reappraisal of shear wave splitting parameters from Italian active volcanic area through a semiautomatic algorithm, J. Seismol., 13(2), 253–266, doi:10.1007/s10950-008-9125-z.[CrossRef] Bianco, F., M. Castellano, G. Milano, and G. Vilardo (1996), Shear-wave polarization alignment on the eastern flank of Mt. Etna volcano (Sicily, Italy), Ann. Geofis., XXXIX, 2, 429–443. Bianco, F., L. Scarfi, E. Del Pezzo, and D. Patanè (2006), Shear wave splitting changes associated with the 2001 volcanic eruption on Mt. Etna, Geophys. J. Int., 167, 959–967, doi:10.1111/j.1365-246X.2006.03152.x.[CrossRef] Billi, A., V. Acocella, R. Funiciello, G. Giordano, G. Lanzafame, and M. Neri (2003), Mechanisms for ground-surface fracturing and incipient slope failure associated with the 2001 eruption of Mt. Etna, Italy: Analysis of ephemeral data, J. Volcanol. Geotherm. Res., 122, 281–294, doi:10.1016/S0377-0273(02)00507-3.[CrossRef] Bonamassa, O., and J. E. Vidale (1991), Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake sequence, Bull. Seismol. Soc. Am., 81, 1945–1958. Bonamassa, O., J. E. Vidale, H. Houston, and S. Y. Schwartz (1991), Directional site resonances and the influence of near-surface geology on ground motion, Geophys. Res. Lett., 18, 901–904, doi:10.1029/91GL01063.[AGU] Boness, N. L., and M. D. Zoback (2004), Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA, Geophys. Res. Lett., 31, L15S17, doi:10.1029/2003GL019020.[AGU] Brogna, A., S. La Delfa, V. La Monaca, S. Lo Nigro, D. Morelli, G. Patanè, and G. Trincali (2007), Measurements of indoor radon concentration on the south-eastern flank of the Mount Etna volcano (southern Italy), J. Volcanol. Geotherm. Res., 165, 71–75, doi:10.1016/j.jvolgeores.2007.04.012.[CrossRef] Burton, M., M. Neri, and D. Condorelli (2004), High spatial resolution radon measurements reveal hidden active faults on Mt. Etna, Geophys. Res. Lett., 31, L07618, doi:10.1029/2003GL019181.[AGU] Chouet, B. A. (1985), Excitation of a buried magmatic pipe: A seismic source model for volcanic tremor, J. Geophys. Res., 90, 1881–1893, doi:10.1029/JB090iB02p01881.[AGU] Chouet, B. A. (1996), Long-period volcano seismicity: Its source and use in eruption forecasting, Nature, 380, 309–316, doi:10.1038/380309a0.[CrossRef] Chouet, B., G. De Luca, G. Milana, P. Dawson, M. Martini, and R. Scarpa (1998), Shallow velocity structure of Stromboli volcano, Italy, derived from small-aperture array measurements of Strombolian tremor, Bull. Seismol. Soc. Am., 88, 653–666. Cochran, E. S., J. E. Vidale, and Y. G. Li (2003), Near-fault anisotropy following the Hector Mine earthquake, J. Geophys. Res., 108(B9), 2436, doi:10.1029/2002JB002352.[AGU] Cochran, E. S., Y. G. Li, and J. E. Vidale (2006), Anisotropy in the shallow crust observed around the San Andreas Fault before and after the 2004 M 6.0 Parkfield earthquake, Bull. Seismol. Soc. Am., 96, S364–S375, doi:10.1785/0120050804.[CrossRef] Cultrera, G, A. Rovelli, G. Mele, R. M. Azzara, A. Caserta, and F. Marra (2003), Azimuth-dependent amplification of weak and strong ground motions within a fault zone (Nocera Umbra, central Italy), J. Geophys. Res., 108(B3), 2156, doi:10.1029/2002JB001929.[AGU] Del Pezzo, E., S. De Martino, S. Gresta, M. Martini, G. Milana, D. Patanè, and C. Sabbarese (1993), Velocity and spectral characteristics of the volcanic tremor at Etna deduced by a small seismometers array, J. Volcanol. Geotherm. Res., 56, 369–378, doi:10.1016/0377-0273(93)90003-A.[CrossRef] Di Grazia, G., S. Falsaperla, and H. Langer (2006), Volcanic tremor location during the 2004 Mount Etna lava effusion, Geophys. Res. Lett., 33, L04304, doi:10.1029/2005GL025177.[AGU] Di Lieto, B., G. Saccorrotti, L. Zuccarello, M. La Rocca, and R. Scarpa (2007), Continuous tracking of volcanic tremor at Mount Etna, Italy, Geophys. J. Int., 169, 699–705, doi:10.1111/j.1365-246X.2007.03316.x.[CrossRef] Ereditato, D., and G. Luongo (1994), Volcanic tremor wavefield during quiescent and eruptive activity at Mt. Etna (Sicily), J. Volcanol. Geotherm. Res., 61, 239–251, doi:10.1016/0377-0273(94)90006-X.[CrossRef] Falsaperla, S., S. Alparone, S. D'Amico, G. Di Grazia, F. Ferrari, H. Langer, T. Sgroi, and S. Spampanato (2005), Volcanic tremor at Mt. Etna, Italy, preceding and accompanying the eruption of July August, 2001, Pure Appl. Geophys., 162, 2111–2132, doi:10.1007/s00024-005-2710-y.[CrossRef] Faulkner, D. R., M. Mitchell, D. Healy, and M. J. Heap (2006), Slip on weak faults by the rotation of regional stress in the fracture damage zone, Nature, 444, 922–925, doi:10.1038/nature05353.[CrossRef] Fehler, M. (1983), Observations of volcanic tremor at Mount St. Helens Volcano, J. Geophys. Res., 88, 3476–3484, doi:10.1029/JB088iB04p03476.[AGU] Ferrucci, F., C. Godano, and N. A. Pino (1990), Approach to the volcanic tremor by the covariance analysis: Application to the 1989 eruption of Mt. Etna (Sicily), Geophys. Res. Lett., 17, 2425–2428, doi:10.1029/GL017i013p02425.[AGU] Gresta, S., S. Imposa, D. Patanè, and G. Patanè (1987), Volcanic tremor at Mt. Etna: State-of-the-art and perspectives, Pure Appl. Geophys., 125, 1079–1095, doi:10.1007/BF00879369.[CrossRef] Immè, G., S. La Delfa, S. Lo Nigro, D. Morelli, and G. Patanè (2006), Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption, Radiat. Meas., 41, 241–245, doi:10.1016/j.radmeas.2005.06.008.[CrossRef] Immè, G., S. La Delfa, S. Lo Nigro, D. Morelli, and G. Patanè (2006), Soil radon monitoring in NE flank of Mt. Etna (Sicily), Appl. Radiat. Isot., 64, 624–629, doi:10.1016/j.apradiso.2005.12.007.[CrossRef] Jousset, P., and J. Douglas (2007), Long-period earthquake ground displacements recorded on Guadeloupe (French Antilles), Earthquake Eng. Struct. Dyn., 36(7), 949–964, doi:10.1002/eqe.666.[CrossRef] Jurkevics, A. (1988), Polarisation analysis of three-component array data, Bull. Seismol. Soc. Am., 78, 1725–1743. Kanasewich, E. R. (1981), Time Sequence Analysis in Geophysics, 532 pp., Univ. of Alberta Press, Edmonton, Canada. Konstantinou, I. K., and V. Schlindwein (2003), Nature, wavefield properties and source mechanism of volcanic tremor: A review, J. Volcanol. Geotherm. Res., 119, 161–187, doi:10.1016/S0377-0273(02)00311-6.[CrossRef] Kvaerna, T., and F. Ringhdal (1986), Stability of various f-k estimation techniques, semiannual technical summary, NORSAR Sci. Rep. 29-40, Seismol. Obs., Univ. of Bergen, Bergen, Norway. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, and E. Del Pezzo (2004), Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. Seismol. Soc. Am., 94, 1850–1867, doi:10.1785/012003238.[CrossRef] Lentini, F. (1982), The geology of the Mt. Etna basement, Mem. Soc. Geol. Ital., 23, 7–25. Lewis, M. A., Z. Peng, Y. Ben-Zion, and F. L. Vernon (2005), Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867–881, doi:10.1111/j.1365-246X.2005.02684.x.[CrossRef] Li, Y. G., and P. C. Leary (1990), Fault zone trapped seismic waves, Bull. Seismol. Soc. Am., 80, 1245–1271. Louie, N. J. (2001), Faster, better shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bull. Seismol. Soc. Am., 91, 347–364, doi:10.1785/0120000098.[CrossRef] Milana, G., A. Rovelli, A. De Sortis, G. Calderoni, G. Coco, M. Corrao, and P. Marsan (2008), The role of long-period ground motions on magnitude and damage of volcanic earthquakes on Mt. Etna, Italy, Bull. Seismol. Soc. Am., 98, 2724–2738, doi:10.1785/0120080072.[CrossRef] Morelli, D., G. Immè, S. La Delfa, S. Lo Nigro, and G. Patanè (2006), Evidence of soil radon as tracer of magma uprising at Mt. Etna, Radiat. Meas., 41, 721–725, doi:10.1016/j.radmeas.2006.04.026.[CrossRef] Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption, Bull. Volcanol., 66, 417–430, doi:10.1007/s00445-003-0322-x.[CrossRef] Obrizzo, F., F. Pingue, C. Troise, and G. De Natale (2001), Coseismic displacements and creeping along the Pernicana fault (Etna, Italy) in the last 17 years: A detailed study of a tectonic structure on a volcano, J. Volcanol. Geotherm. Res., 109, 109–131, doi:10.1016/S0377-0273(00)00307-3.[CrossRef] Park, C. B., R. D. Miller, and J. Xia (1999), Multi-channel analysis of surface waves (MASW), Geophysics, 64, 800–808, doi:10.1190/1.1444590.[CrossRef] Privitera, E., T. Sgroi, and S. Gresta (2003), Statistical analysis of intermittent volcanic tremor associated with the September 1989 summit explosive eruptions at Mt. Etna, Sicily, J. Volcanol. Geotherm. Res., 120, 235–247, doi:10.1016/S0377-0273(02)00400-6.[CrossRef] Puglisi, G., and V. Acocella (2008), Integrated study to define the hazard of the instable flanks of Etna: The DPC-INGV 2008–2010 project, paper presented at EGU 2008 General Assembly, Session “Volcano Flank Instability”, Eur. Geosci. Union, Vienna, Austria. Richwalski, S. M., M. Picozzi, S. Parolai, C. Milkereit, F. Baliva, D. Albarello, K. Roy-Chowdhury, H. van der Meer, and J. Zschau (2007), Rayleigh wave dispersion curves from seismological and engineering-geotechnical methods: A comparison at the Bornheim test site (Germany), J. Geophys. Eng., 4, 349–361, doi:10.1088/1742-2132/4/4/001.[CrossRef] Rigano, R., F. Cara, G. Lombardo, and A. Rovelli (2008), Evidence for ground motion polarization on fault zones of Mount Etna volcano, J. Geophys. Res., 113, B10306, doi:10.1029/2007JB005574.[AGU] Ripepe, M., M. Coltelli, E. Privitera, S. Gresta, M. Moretti, and D. Piccinini (2001), Seismic and infrasonic evidences for an impulsive source of the shallow volcanic tremor at Mt. Etna, Italy, Geophys. Res. Lett., 28, 1071–1074, doi:10.1029/2000GL011391.[AGU] Rovelli, A., A. Caserta, F. Marra, and V. Ruggiero (2002), Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seismol. Soc. Am., 92, 2217–2232, doi:10.1785/0120010288.[CrossRef] Rust, D., B. Behncke, M. Neri, and A. Ciocanel (2005), Nested zones of instability in the Mount Etna volcano edifice, Italy, J. Volcanol. Geotherm. Res., 144, 137–153, doi:10.1016/j.jvolgeores.2004.11.021.[CrossRef] Saccorotti, G., L. Zuccarello, E. Del Pezzo, J. Ibanez, and S. Gresta (2004), Quantitative analysis of the tremor wavefield at Etna Volcano, Italy, J. Volcanol. Geotherm. Res., 136, 223–245, doi:10.1016/j.jvolgeores.2004.04.003.[CrossRef] Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm: I. Searching a parameter space, Geophys. J. Int., 138, 479–494, doi:10.1046/j.1365-246X.1999.00876.x.[CrossRef] Schubnel, A., and Y. Guéguen (2003), Dispersion and anisotropy of elastic waves in cracked rocks, J. Geophys. Res., 108(B2), 2101, doi:10.1029/2002JB001824.[AGU] Seidl, D., R. Schick, and M. Riuscetti (1981), Volcanic tremors at Etna: A model for hydraulic origin, Bull. Volcanol., 44(1), 43–56, doi:10.1007/BF02598188.[CrossRef] Spudich, P., M. Hellweg, and H. K. Lee (1996), Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions, Bull. Seismol. Soc. Am., 86, S193–S208. Tibaldi, A., and G. Groppelli (2002), Volcano-tectonic activity along structures of the unstable NE flank of the Mt. Etna (Italy) and their possible origin, J. Volcanol. Geotherm. Res., 115, 277–302, doi:10.1016/S0377-0273(01)00305-5.[CrossRef] Tokimatsu, K. (1997), Geotechnical site characterization using surface waves, in Earthquake Geotechnical Engineering, edited by K. Ishihara, pp. 1333–1368, A. A. Balkema, Rotterdam, Netherlands. Wathelet, M. (2005), Array recordings of ambient vibrations: Surface waves inversion, Ph.D. thesis, 177 pp., Univ. of Liege, Liege, Belgium. Wathelet, M., D. Jongmans, M. Ohrnberger, and S. Bonnefoy-Claudet (2008), Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion, J. Seismol., 12, 1–19, doi:10.1007/s10950-007-9067-x.[CrossRef] Wegler, U., and D. Seidl (1997), Kinematic parameters of the tremor wavefield at Mt. Etna (Sicily), Geophys. Res. Lett., 24, 759–762, doi:10.1029/97GL00673.[AGU] Wu, J., J. A. Hole, J. A. Snoke, and M. G. Imhof (2008), Depth extent of the fault-zone seismic waveguide: Effects of increasing velocity with depth, Geophys. J. Int., 173, 611–622, doi:10.1111/j.1365-246X.2008.03755.x.en
dc.source.commentaryonAn edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDi Giulio, G.en
dc.contributor.authorCara, F.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorLombardo, G.en
dc.contributor.authorRigano, R..en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversity of Cataniaen
dc.contributor.departmentUniversity of Cataniaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Geologiche, Università di Catania,-
crisitem.author.deptUniversità di Catania-
crisitem.author.orcid0000-0002-4097-7102-
crisitem.author.orcid0000-0002-1702-563X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
paper_etna.pdfmanuscript7.66 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

27
checked on Feb 10, 2021

Page view(s) 50

200
checked on Apr 24, 2024

Download(s) 20

493
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric