Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallRuch, J.; Deutsches GeoForschungsZentrum, Potsdamen
dc.contributor.authorallManconi, A.; Deutsches GeoForschungsZentrum, Potsdamen
dc.contributor.authorallZeni, G.; IREA, CNR, Naplesen
dc.contributor.authorallSolaro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPepe, A.; IREA, CNR, Naplesen
dc.contributor.authorallShirzaei, M.; Deutsches GeoForschungsZentrum, Potsdamen
dc.contributor.authorallWalter, T.R.; Deutsches GeoForschungsZentrum, Potsdamen
dc.contributor.authorallLanari, R.; IREA, CNR, Naplesen
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2009) American Geophysical Union.en
dc.description.abstractWe generated a 13-year InSAR time series from 1995– 2008 to investigate the spatiotemporal characteristics of two neighboring volcano’s deformations for the Lazufre volcanic area, central Andes. The data reveal two scales of uplift initiating during the observation time: (1) a largescale uplift started in 1997 that shows an increase of the mean uplift rate of up to 3.2 cm/yr, now affecting several eruptive centers situated in an area larger than 1800 km2 and (2) a small-scale uplift located at Lastarria volcano, which is the only volcano to show strong fumarolic activity in decades, with most of the clear deformation apparently not observed before 2000. Both the large and small uplift signals can be explained by magmatic or hydrothermal sources located at about 13 km and 1 km deep, respectively. To test a possible relationship, we use numerical modeling and estimate that the depth inflating source increased the tensile stress close to the shallow source. We discuss how the deep inflating source may have disturbed the shallow one and triggered the observed deformation at Lastarria.en
dc.relation.ispartofGeophysical Research Lettersen
dc.subjectcentral Andesen
dc.titleStress transfer in the Lazufre volcanic area, central Andesen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.relation.referencesAizawa, K., Y. Ogawa, and T. Ishido (2009), Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self-potential and magnetotellurics, J. Geophys. Res., 114, B01208, doi:10.1029/2008JB005910. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR Interferograms, IEEE Trans. Geosci. Remote Sens., 40(11), 2375– 2383, doi:10.1109/TGRS.2002.803792. Casu, F., M. Manzo, and R. Lanari (2006), A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens. Environ., 102, 195 – 210, doi:10.1016/ j.rse.2006.01.023. De Silva, S., and P. W. Francis (1991), Volcanoes of the Central Andes, 216 pp., Springer, Berlin. Froger, J. L., D. Remy, S. Bonvalot, and D. Legrand (2007), Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data, Earth Planet. Sci. Lett., 255(1– 2), 148–163, doi:10.1016/j.epsl.2006.12.012. Gudmundsson, A. (2006), How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes, Earth-Sci. Rev., 79(1– 2), 1 – 31, doi:10.1016/j.earscirev.2006.06.006. Hill, D. P., F. Pollitz, and C. Newhall (2002), Earthquake-volcano interactions, Phys. Today, 55(11), 41–47, doi:10.1063/1.1535006. Hurwitz, S., L. B. Christiansen, and P. A. Hsieh (2007), Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations, J. Geophys. Res., 112, B02206, doi:10.1029/2006JB004689. Jellinek, A. M., and D. J. DePaolo (2003), A model for the origin of large silicic magma chambers: precursors of caldera-forming eruption, Bull. Volcanol., 65, 363–381, doi:10.1007/s00445-003-0277-y. Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983), Optimization by simulated annealing, Science, 220(4598), 671 – 680, doi:10.1126/ science.220.4598.671. Manconi, A., T. R. Walter, and F. Amelung (2007), Effects of mechanical layering on volcano deformation, Geophys. J. Int., 170, 952–958, doi:10.1111/j.1365-246X.2007.03449.x. Manga, M., and E. Brodsky (2006), Seismic triggering of eruptions in the far field: Volcanoes and geysers, Annu. Rev. Earth Planet. Sci., 34, 263– 291, doi:10.1146/ Massonnet, D., and K. L. Feigl (1998), Radar interferometry and its applications to changes in the Earth’s surface, Rev. Geophys., 36, 441–500, doi:10.1029/97RG03139. McLeod, P., and S. Tait (1999), The growth of dykes from magma chambers, J. Volcanol. Geotherm. Res., 92, 231 – 245, doi:10.1016/S0377- 0273(99)00053-0. McTigue, D. F. (1987), Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox, J. Geophys. Res., 92, 12,931– 12,940, doi:10.1029/JB092iB12p12931. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull. Earthquake Res. Inst. Univ. Tokyo, 36, 99– 134. Naranjo, J. A., and P. Francis (1987), High velocity debris avalanche at Lastarria Volcano in the north Chilean Andes, Bull. Volcanol., 49, 509– 514, doi:10.1007/BF01245476. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154. Oncken, O., D. Hindle, J. Kley, K. Elger, P. Victor, and K. Schemmann (2006), Deformation of the central Andean upper plate system—Facts, fiction, and constraints for plateau models, in The Andes. Active Subduction Orogeny, Frontiers Earth Sci., vol. 1, edited by O. Oncken et al., pp. 3 – 27, Springer, Berlin. Pritchard, M. E., and M. Simons (2002), A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418(6894), 167–171, doi:10.1038/nature00872. Pritchard, M. E., and M. Simons (2004), An InSAR-based survey of volcanic deformation in the southern Andes, Geophys. Res. Lett., 31, L15610, doi:10.1029/2004GL020545. Ruch, J., J. Anderssohn, T. R. Walter, and M. Motagh (2008), Caldera-scale inflation of the Lazufre volcanic area, South America: Evidence from InSAR, J. Volcanol. Geotherm. Res., 174, 337 – 344, doi:10.1016/ j.jvolgeores.2008.03.009. Savin, G. N. (1961), Stress Concentration Around Holes, 430 pp., Pergamon, New York. Shirzaei, M., and T. R. Walter (2009), Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data, J. Geophys. Res., 114, B10401, doi:10.1029/2008JB006071. Stanton, J. M. (2001), Galton, Pearson and the Peas: A brief history of linear regression for statistic instructors, J. Stat. Educ., 9(3), 1. Thomas, A. L. (1993), Poly3D: A Three-Dimensional, Polygonal Element, Displacement Discontinuity Boundary Element Computer Program With Applications to Fractures, Faults, and Cavities in the Earth’s Crust, 110 pp., Stanford Univ., Stanford, Calif. Walter, T. R. (2007), How a tectonic earthquake may wake up volcanoes: Stress transfer during the 1996 earthquake-eruption sequence at the Karymsky Volcanic Group, Kamchatka, Earth Planet. Sci. Lett., 264, 347– 359, doi:10.1016/j.epsl.2007.09.006. Wang, H. F. (2000), Theory of Linear Poroelasticity: With Applications to Geomechanics, 287 pp., Princeton Univ. Press, Princeton, N. J. Williams, C. A., and G. Wadge (1998), The effects of topography on magma chamber deformation models: Application to Mount Etna and radar interferometry, Geophys. Res. Lett., 25, 1549– 1552, doi:10.1029/ 98GL01136.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.contributor.authorRuch, J.en
dc.contributor.authorManconi, A.en
dc.contributor.authorZeni, G.en
dc.contributor.authorSolaro, G.en
dc.contributor.authorPepe, A.en
dc.contributor.authorShirzaei, M.en
dc.contributor.authorWalter, T.R.en
dc.contributor.authorLanari, R.en
dc.contributor.departmentDeutsches GeoForschungsZentrum, Potsdamen
dc.contributor.departmentDeutsches GeoForschungsZentrum, Potsdamen
dc.contributor.departmentIREA, CNR, Naplesen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIREA, CNR, Naplesen
dc.contributor.departmentDeutsches GeoForschungsZentrum, Potsdamen
dc.contributor.departmentDeutsches GeoForschungsZentrum, Potsdamen
dc.contributor.departmentIREA, CNR, Naplesen
item.fulltextWith Fulltext-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth- Scienze Geologiche, Università Roma Tre, Roma, Italy- per il Rilevamento Elettromagnetico dell’Ambiente, National Research Council, Via Diocleziano 328, I-80124 Naples, Italy-, Naples, Italy.-` Federico II, Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni- GeoForschungsZentrum, Potsdam- Physics of the Earth, Helmholtz-Zentrum Potsdam, Deutsches, GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
RucMan-09.pdf706.72 kBAdobe PDF
Show simple item record

Citations 50

checked on Feb 10, 2021

Page view(s) 50

checked on May 20, 2022


checked on May 20, 2022

Google ScholarTM