Please use this identifier to cite or link to this item:
Authors: Bindi, D.* 
Luzi, L.* 
Pacor, F.* 
Title: Interevent and Interstation Variability Computed for the Italian Accelerometric Archive (ITACA)
Issue Date: Aug-2009
Series/Report no.: 4/99 (2009)
DOI: 10.1785/0120080209
Keywords: Variability
Subject Classification04. Solid Earth::04.06. Seismology::04.06.04. Ground motion 
Abstract: The interevent and interstation ground-motion variability of the updated Italian strong-motion database (Italian Accelerometric Archive [ITACA]) has been explored through the development of new empirical ground-motion prediction equations (GMPEs) for Italy. The regressions have been performed on 241 three-component waveforms from 27 earthquakes with moment magnitudes ranging from 4.8 to 6.9, recorded by 146 stations at distances up to 200 km. The site classification follows the schemes previously proposed for Italy, in which two soil classes are defined, considering both shear-wave velocity and deposit thickness. The regression analysis uses the values of the explanatory variables (magnitude, fault distance, site class, and style of faulting) recently revised in the framework of a project funded by the Italian Department of Civil Protection. The equations have been derived for peak ground acceleration, peak ground velocity, and 5% damped spectral accelerations at 18 periods from 0.03 to 2 sec. The residual variance has been decomposed into interevent, interstation, and record-to-record components by applying a random effect regression scheme. The interevent and interstation error distributions have been analyzed as function of periods to detect sites and events for which predicted values significantly deviate from observations. For periods up to 0.35 sec, the interstation is the dominant component of variance, indicating that an improvement in the site classification could lead to a refinement of the GMPEs. For longer periods, the three components of variance provide similar contributions, indicating that a reduction of the uncertainty can be achieved by reducing the epistemic uncertainty affecting the physical model. The interevent error highlights the peculiarity of few earthquakes, suggesting that the evaluation of regional GMPEs can be important when specific scenario studies should be carried out. The interstation variability allows us to detect stations with peculiar site response and to assess the goodness of the considered site classification scheme. Introduction In Italy, strong-motion recordings have been available since the early 1970s. Because different institutions managed the Italian strong-motion network (Rete accelerometrica italiana [RAN]), both waveforms and metadata needed to qualify the recordings are hardly available to end-users, except for few cases, such as the 1997–1998 Umbria-Marche sequence and the 2002 Molise earthquakes (see the Data and Resources section). The Italian Dipartimento di Protezione Civile (Italian Department for Civil Protection [DPC]) after an agreement with the Istituto Nazionale di Geofisica e Vulcanologia (Italian Institute for Geophysics and Volcanology [INGV]) funded in 2004 the project called “Database dei dati accelerometrici italiani relativi al periodo 1972–2004” (Italian strong-motion database relevant to the period 1972–2004, hereinafter referred to as project S6,
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
BSSA-D-08-00209.fdfMain article2.08 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Aug 20, 2018


checked on Aug 20, 2018

Google ScholarTM