Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/534
DC FieldValueLanguage
dc.contributor.authorallScarfì, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallLanger, H.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallScaltrito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.date.accessioned2005-11-06T04:30:32Zen
dc.date.available2005-11-06T04:30:32Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/534en
dc.description.abstractThe Peloritani Mountains in northeastern Sicily make part of the Appennine-Maghrebian Chain, which forms the highly deformed southern margin of the European Continent. In this zone the NW–SE-striking ‘Aeolian-Tindari-Giardini’ System (ATG) separates two areas of seismicity. To the west of the ATG fault system, seismic activity below a depth of 40 km is essentially absent. To the east of this fault system,we note a significant presence of intermediate depth and deep events, which mark the subduction zone in the Calabrian Arc. Between 1994 and 2003 300 microearthquakes could be located with fair accuracy near the ATG fault system. Their depths range from less than 5 to 40 km, with greater depths occurring to the east of the ATG.We examined the resolution capability of the standard location by applying a grid search location for typical events. The distribution of the residuals shows trends recognizable in the standard locations that are in part an artefact of a non-ideal conditions of the standard locations, such as the station configuration, the use of an unsuitable velocity model and inconsistencies of arrival time pickings. By applying relative location techniques (the double-difference method and a master-event technique) we were able to reduce the scatter of hypocentres significantly. We focused in particular on earthquake families with similar waveforms and estimated the geometrical extent of hypocentre clusters. Compared to the standard location the dispersion of hypocentres decreased by an amount of over 90 per cent and the volume occupied by the foci contracted to 1 per cent. The significance of these geometries was tested with Monte Carlo experiments and by interchanging the master events. The cluster geometries are consistent with the dislocation patterns as inferred from fault-plane solutions but do not show a simple relation to the ATG. The role of fluid flow of plutonic origin may be invoked as a possible trigger mechanism. This hypothesis is supported by the presence of geothermal anomalies in the vicinity as well as by an upward migration trend in foci.en
dc.format.extent538 bytesen
dc.format.extent897721 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1/163(2005)en
dc.subjectcross-correlationen
dc.subjectearthquake swarmsen
dc.subjectfocal mechanismen
dc.subjectgrid search locationen
dc.subjectmaster-event techniqueen
dc.subjectrelative locationen
dc.titleRelocation of microearthquake swarms in the Peloritani mountains – implications on the interpretation of seismotectonic patterns in NE Sicily, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber225-237en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1111/j.1365-246X.2005.02720.xen
dc.relation.referencesAmelung, F. & King, G., 1997. Large-scale tectonic deformation from small earthquakes, Nature, 386, 702–705. Anderson, H. & Jackson, J., 1987. The deep seismicity of the Tyrrhenian Sea, Geophys. J. R. Astr. Soc., 91, 613–637. Aster, R.C. & Rowe, C.A., 2000. Automatic phase pick refinement and similar event association in large seismic data sets, in Advances in seismic event location, pp. 231–263, eds. Thurber, C. & Rabinowitz, N., Kluwer, Amsterdam. Barberi, F., Gasparini, P., Innocenti, F. & Villari, L., 1973. Volcanism of the Southern Tyrrhenian Sea and its geodynamic implications, J. Geophys. Res., 78, 5221–5232. Ben-Avraham, Z., Lyakhovsky, V. & Grasso, M., 1995. Simulation of collision zone segmentation in the central Mediterranean, Tectonophysics, 243, 57–68. Caltabiano, T., Condarelli, D., Gresta, S., Patanè, D. & Patanè, G., 1986. Analisi preliminare dei dati della stazione sismica di Serra Pizzuta Calvarina, CNR-IIV Open File Report 10/86. Deichmann,N.&Garcia-Fernandez, M., 1992. Rupture geometry from highprecision relative hypocentre locations of microearthquake rupture, Geophys. J. Int., 110, 501–517. De Luca, G., Filippi, L., Caccamo, D., Neri, G. & Scarpa, R., 1997. Crustal structure and seismicity of southern Tyrrenian basin, Phys. Earth planet. Int., 103, 117–133. Dziewonski, A.M., Ekström, G., Franzen, J.E. & Woodhouse, J.H., 1987. Global seismicity of 1978: centroid-moment tensor solutions for 512 earthquakes, Phys. Earth Planet. Int., 46, 316–342. Falsaperla, S. & Spampinato, S., 1999. Tectonic seismicity at Stromboli volcano (Italy) from historical data and seismic records, Earth planet. Sci. Lett., 173/4, 425–437. Finetti, I.&Del Ben, A., 1986. Geophysical study of the Tyrrhenian opening, Boll. Geof. Teor. Appl., 110, 75–155. Frémont, M.J. & Malone, S.D., 1987. High precision relative locations of earthquakes at Mount St. Helens, Washington, J. geophys. Res., 92, 10 223–10 236. Gasparini, C., Iannaccone, G., Scandone, P. & Scarpa, R., 1982. Seismotectonics of the Calabrian Arc, Tectonophysics, 84, 267–286. Gasparini, C., Iannaccone, G. & Scarpa, R., 1985. Fault plane solutions and seismicity of the Italian peninsula, Tectonophysics, 117, 59–78. Giardini, D. & Velonà, M., 1991. The deep seismicity of the Tyrrhenian Sea, Terra Nova, 3, 57–64. Hill, D.P., 1977. A model for earthquake swarms, J. geophys. Res., 82, 1347– 1352. INGV, 2005. Terremoti recenti localizzati con la rete sismica della Sicilia Orientale, Web Site: www.ct.ingv.it/sismologia. Lahr, J.C., 1989. HYPOELLIPSE/VERSION 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern, Open File Rep. 89-116, 92 p., U.S. Geol. Surv.,Washington. Lentini, F., Catalano, S. & Carbone, S., 2000. Carta geologica della provincia di Messina, Provincia Regionale di Messina. Assessorato Territorio–Servizio geologico, SELCA, Firenze. Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory, 45, International Geophysics Series, Academic Press, S., Diego, CA. Michelini, A. & Lomax, A., 2004. The effect of velocity structure errors on double-difference earthquake location, Geophys. Res. Lett., 31, L099602, doi: 10.1029/2004GL019682. Monaco, C. & Tortorici, L., 2000. Active faulting in the Calabrian Arc and eastern Sicily, J. Geodyn., 29, 407–424. Neri, G., Barberi, G., Orecchio, B. & Aloisi, M., 2002. Seismotomography of the crust in the transition zone between the southern Tyrrhenian and Sicilian tectonic domains, Geophys. Res. Lett., 29(23), 2135, doi:10.1029/2002GL015562. Neri, G., Barberi, G., Orecchio, B. & Mostaccio, A., 2003. Seismic strain and seismogenic stress regimes in the crust of the southern Tyrrhenian region, Earth planet. Sci. Lett., 213, 97–112. Nishigami, K., 1987. Clustering structure and fracture process of microearthquake sequences, J. Phys. Earth, 35, 425–448. Patacca, E., Sartori, R. & Scandone, P., 1990. Tyrrhenian basin and Appenninic arcs: kinematic relations since late Tortonian times, Mem. Soc. Geol. It., 45, 425–451. Poupinet, G., Ellsworth,W.L.&Fréchet, J., 1984. Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California, J. geophys. Res., 89, 5719–5731. Reasenberg, P.A. & Oppenheimer, D., 1985. FPFIT, FPPLOT and FPPAGE: fortran computer progams for calculating and displaying earthquake faultplane solutions, Open File Rep., 85-379, 109 pp., U.S. Geol. Surv., Washington. Ross, S.L., Michael, A.J., Ellsworth, W.L., Julian, B., Klein, F., Oppenheimer, D. & Richards-Dinger, K., 2001. Effects of initial location error and station distribution on double-difference earthquake relocations: comparing the San Gregorio and Calaveras Faults, Seism. Res. Lett., 72, 291. Rowe, C.A., Aster, R.C., Borchers, B. & Young, C.J., 2002. An automatic, adaptive algorithm for refining phase picks in large seismic data sets, Bull. seism. Soc. Am., 92, 1660–1674. Rowe, C.A., Thurber, C.H. & White, R.A., 2004. Relocation of volcanic event swarms at Soufriere Hills volcano, Montserrat, 1995–1996, Jour. Volc. Geotherm. Res., 134, 199–221. Scarfì, L., Langer, H. & Gresta, S., 2003. High-precision relative locations of two microearthquake clusters in southeastern Sicily, Italy, Bull. seism. Soc. Am., 93, 1479–1497. Scherbaum, F. &Wendler, J., 1986. Cross-spectral analysis of Swabian Jura (SW Germany) three-component microearthquake recordings, J. Geophys., 60, 157–166. Scholz, C.H., 1990. The mechanics of earthquakes and faulting, 439 pp. Cambridge University Press, New York. Selvaggi, G. & Chiarrabba, C., 1995. Seismicity and P-wave velocity image of the Southern Tyrrhenian subduction zone, Geophys. J. Int., 121, 818–826. Sibson, R.H., 1996. Structural permeability of fluid-driven fault-fracture meshes, J. Struct. Geol., 18, 1031–1042. Snoke, J.A., Munsey, J.W., Teague, A.C.&Bollinger, G.A., 1984.Aprogram for focal mechanism determination by combined use of polarity of SV-P amplitude ratio data, Earthquake Notes, 55, 3–15. Waldhauser, F. & Ellsworth, W.L., 2000. A double-difference earthquake location algorithm: method and application to North Hayward Fault, California, Bull. seism. Soc. Am., 90, 1353–1368.en
dc.description.fulltextpartially_openen
dc.contributor.authorScarfì, L.en
dc.contributor.authorLanger, H.en
dc.contributor.authorScaltrito, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.orcid0000-0002-5995-3880-
crisitem.author.orcid0000-0002-2508-8067-
crisitem.author.orcid0000-0002-0480-4992-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Scarfi et al.pdf876.68 kBAdobe PDF
Blackwell.html538 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s)

181
checked on Apr 24, 2024

Download(s) 50

100
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric