Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5323
DC FieldValueLanguage
dc.contributor.authorallBehncke, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPshenichny, C. A.; Geological Mapping Division, VNII Okeangeologia, Angliisky Prospect, 1, 190121 St. Petersburg, Russiaen
dc.date.accessioned2009-12-04T09:53:22Zen
dc.date.available2009-12-04T09:53:22Zen
dc.date.issued2009-08-20en
dc.identifier.urihttp://hdl.handle.net/2122/5323en
dc.description.abstractOne of the best-studied volcanoes of the world, Mt. previous termEtnanext term in Sicily, repeatedly exhibits eruptive scenarios that depart from the behavior commonly considered typical for this volcano. Episodes of intense explosive activity, pyroclastic flows, dome growth and cone collapse pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as “normal” eruptions, yet combined in an unexpected, probably unique, way. To cope with such unexpected consequences, we involve an approach of artificial intelligence developed specially for needs of the geosciences, the event bush. Scenarios inferred from the event bush fit the observed ones and allow to foresee other low-probability events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between expert knowledge and numerical assessment, e.g., by means of Bayesian Belief Networks.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/185 (2009)en
dc.subjectEtnaen
dc.subjectEvent bush methoden
dc.subjectartificial intelligenceen
dc.titleModeling unusual eruptive behavior of Mt. Etna, Italy, by means of event bushen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber157-171en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1016/j.jvolgeores.2009.04.020en
dc.relation.referencesAspinall and Cooke, 1998 W. Aspinall and R.M. Cooke In: A. Mosleh and R.A. Bari, Editors, Expert Judgement and the Montserrat Volcano Eruption, Proceedings of the 4th International Conference on Probabilistic Safety Assessment and Management PSAM4, September 13th–18th, 1998, New York City, USA vol. 3 (1998), pp. 2113–2118. Aspinall et al., 2003 W.P. Aspinall, G. Woo, B. Voight and P.J. Baxter, Evidence-based volcanology: application to eruption crises, J. Volcanol. Geotherm. Res. 128 (2003), pp. 273–285. Behncke, 2009 B. Behncke, Hazards from pyroclastic density currents at Mt. previous termEtnanext term (Italy), J. Volcanol. Geotherm. Res. 180 (2009), pp. 148–160 10.1016/j.jvolgeores.2008.09.021. Behncke and Calvari, 2008 B. Behncke and S. Calvari, previous termEtna:next term 6-km-long lava flow; ash emissions; 13 May 2008 opening of a new eruptive fissure, Bull. Glob. Volcanism Netw. 33 (5) (2008), pp. 11–14. Behncke et al., 2003 B. Behncke, M. Neri and R. Carniel, An exceptional case of lava dome growth spawning pyroclastic avalanches at Mt. previous termEtnanext term (Italy): the 1999 Bocca Nuova eruption, J. Volcanol. Geotherm. Res. 124 (2003), pp. 15–128 10.1016/S0377-0273(03)00072-6. Behncke et al., 2006 B. Behncke, M. Neri, E. Pecora and V. Zanon, The exceptional activity and growth of the Southeast Crater, Mount previous termEtnanext term (Italy), between 1996 and 2001, Bull. Volcanol. 69 (2006), pp. 149–173 10.1007/s00445-006-0061-x. Behncke et al., 2008 B. Behncke, S. Calvari, S. Giammanco, M. Neri and H. Pinkerton, Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rocks: an example from the 2006 summit eruption of Mount previous termEtna,next term Italy, Bull. Volcanol. 70 (2008), pp. 1249–1268 10.1007/s00445-008-0200-7. Behncke et al., 2009 B. Behncke, S. Falsaperla and E. Pecora, Complex magma dynamics at Mount previous termEtnanext term revealed by seismic, thermal and volcanological data, J. Geophys. Res. 114 (2009), p. B03211 10.1029/2008JB005882. Bonaccorso et al., 2004 In: A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro and S. Falsaperla, Editors, Mount previous termEtna:next term Volcano Laboratory, Geophysical Monograph vol. 143, AGU, Washington DC (2004), pp. 1–369. Buneman et al., 2000 P. Buneman, S. Khanna and W.-C. Tan, Data provenance: some basic issues. In: S. Kapoor and S. Prasad, Editors, Foundations of Software Technology and Theoretical Computer Science, 20th Conference, (FST TCS) New Delhi, India — Lecture Notes in Computer Science, 1974, Springer (2000) (http://db.cis.upenn.edu/DL/fsttcs.pdf). Burton et al., 2005 M.R. Burton, M. Neri, D. Andronico, S. Branca, T. Caltabiano, S. Calvari, R.A. Corsaro, P. Del Carlo, G. Lanzafame, L. Lodato, L. Miraglia, G. Salerno and L. Spampinato, previous termEtnanext term 2004–2005: an archetype for geodynamically-controlled effusive eruption, Geophys. Res. Lett. 32 (2005), p. L09303 10.1029/2005GL022527. Calvari and Behncke, 2006 S. Calvari and B. Behncke, previous termEtna:next term lava flows from multiple vents during 22 September to 4 November, Bull. Glob. Volcanism Netw. 31 (10) (2006), pp. 2–3. Calvari and Behncke, 2007 S. Calvari and B. Behncke, previous termEtna:next term episodes of eruptions continue between 4 November and 14 December 2006, Bull. Glob. Volcanism Netw. 32 (2) (2007), pp. 22–26. Carniel et al., 2007 R. Carniel, O. Jaquet and M. Tárraga, Perspectives on the application of the geostatistical approach to volcano forecasting at different time scales. In: J. Gottsmann and J. Marti, Editors, Caldera Volcanism: Analysis, Modelling and Response, Developments in Volcanology, Elsevier (2007) 10.1016/S1871-644X(07)00014-9. Chen, 1976 P. Chen, The entity-relationship model—toward a unified view of data, ACM Trans. Database Syst. 1 (1976), pp. 9–36. Chester et al., 1985 D.K. Chester, A.M. Duncan, J.E. Guest and C.R.J. Kilburn, Mount previous termEtna:next term The Anatomy of a Volcano, Chapman Hall, London (1985) 404 pp.. Diller et al., 2006 K. Diller, A. Clarke, B. Voight and A. Neri, Mechanisms of conduit plug formation: implications for Vulcanian explosions, Geophys. Res. Lett. 33 (2006), p. L20302 10.1029/2006GL027391. Felpeto et al., 2007 A. Felpeto, J. Marti and R. Ortiz, Automatic GIS-based system for volcanic hazard assessment, J. Volcanol. Geotherm. Res. 166 (2007), pp. 106–116 10.1016/j.jvolgeores.2007.07.008. Gerbé et al., 1998 O. Gerbé, R.K. Keller and G.M. Mineau, Conceptual graphs for representing business processes in corporate memories, Conceptual Structures: Theory, Tools and Applications, Lecture Notes in Computer Science, Springer, Berlin (1998), pp. 401–415 1453/1998. Jaquet et al., 2007 O. Jaquet, R.S.J. Sparks and R. Carniel, Magma memory recorded by statistics of volcanic explosions at the Soufriere Hills Volcano, Montserrat. In: H.M. Mader, S.G. Coles, C.B. Connor and L.J. Connor, Editors, Statistics in Volcanology, Geol. Soc. London vol. 1 (2007), pp. 175–184. Kelfoun and Druitt, 2005 K. Kelfoun and T.H. Druitt, Numerical modeling of the emplacement of Socompa rock avalanche, Chile, J. Geophys. Res. 110 (2005), p. B12202 10.1029/2005JB003758. Martí et al., 2008 J. Martí, W.P. Aspinall, R. Sobradelo, A. Felpeto, A. Geyer, R. Ortiz, P. Baxter, P. Cole, J. Pacheco, M.J. Blanco and C. Lopez, A long-term volcanic hazard event tree for Teide–Pico Viejo stratovolcanoes (Tenerife, Canary Islands), J. Volcanol. Geotherm. Res. 178 (2008), pp. 543–552 10.1016/j.jvolgeores.2008.09.023. Marzocchi et al., 2004 W. Marzocchi, L. Sandri, P. Gasparini, C. Newhall and E. Boschi, Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius, J. Geophys. Res. 109 (2004), p. B11201 10.1029/2004JB003155. Marzocchi et al., 2008 W. Marzocchi, L. Sandri and J. Selva, BET_EF: a probabilistic tool for long- and short-term eruption forecasting, Bull. Volcanol. 70 (2008), pp. 623–632 10.1007/s00445-007-0157-y. Mattox and Mangan, 1997 T.N. Mattox and M.T. Mangan, Littoral hydrovolcanic explosions: a case study of lava–seawater interaction at Kilauea Volcano, J. Volcanol. Geotherm. Res. 75 (1997), pp. 1–17. Melnik and Sparks, 1999 O.E. Melnik and R.S.J. Sparks, Non-linear dynamics of lava dome extrusion, Nature 402 (1999), pp. 37–41. View Record in Scopus | Cited By in Scopus (135) Moore, 1967 J.G. Moore, Base surge in recent volcanic eruptions, Bull. Volcanol. 30 (1967), pp. 337–363. MVO, 2006 MVO, 2006; www.mvo.ms. Neri et al., 2008 A. Neri, W.P. Aspinall, R. Cioni, A. Bertagnini, P.J. Baxter, G. Zuccaro, D. Andronico, S. Barsotti, P.D. Cole, T. Esposti Ongaro, T.K. Hincks, G. Macedonio, P. Papale, M. Rosi, R. Santacroce and G. Woo, Developing an event tree for probabilistic hazard and risk assessment at Vesuvius, J. Volcanol. Geotherm. Res. 178 (2008), pp. 397–415. Newhall and Hoblitt, 2002 C.G. Newhall and R.P. Hoblitt, Constructing event trees for volcanic crises, Bull. Volcanol. 64 (2002), pp. 3–20. Nikolenko et al., 2008 S.I. Nikolenko, C.A. Pshenichny and R. Carniel, Learning conditional probabilities in event bushes with temporal and spatial labels. In: M. Sanchez-Marre, Editor, iEMSs — International Congress on Environmental Modelling and Software, Barcelona (2008). Norini et al., 2008 G. Norini, E. De Beni, D. Andronico, M. Polacci, M. Burton and F. Zucca, The 16 November 2006 flank collapse of South-East Crater at Mount previous termEtna,next term Italy: study of the deposit and hazard assessment, J. Geophys. Res. 114 (2009), p. B02204 10.1029/2008JB005779. Pshenichny et al., 2008 C.A. Pshenichny, S.I. Nikolenko, R. Carniel, P.A. Vaganov, Z.V. Khrabrykh, V.P. Moukhachov, V.L. Akimova-Shterkhun and A.A. Rezyapkin, The event bush as a semantic-based numerical approach to natural hazard assessment (exemplified by volcanology), Comput. Geosci (2009) 10.1016/j.physletb.2003.10.071. Sowa, 2000 J.F. Sowa, Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole Publishing Co., Pacific Grove, CA (2000). Straub, 2000 S. Straub, Discrete particle modeling of volcanogenic high-concentration mass flows. In: V.N. Dech and V.A. Glebovitsky, Editors, Capricious Earth: Models and Modeling of Geologic Processes and Objects, Theophrastus Publications, St. Petersburg (2000), pp. 123–136.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBehncke, B.en
dc.contributor.authorPshenichny, C. A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentGeological Mapping Division, VNII Okeangeologia, Angliisky Prospect, 1, 190121 St. Petersburg, Russiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptGeological Mapping Division, VNII Okeangeologia, Angliisky Prospect, 1, 190121 St. Petersburg, Russia-
crisitem.author.orcid0000-0003-1991-1421-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Etna event bush published.pdfFull article6.8 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Feb 7, 2021

Page view(s)

138
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric