Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5284
DC FieldValueLanguage
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2009-11-30T17:22:10Zen
dc.date.available2009-11-30T17:22:10Zen
dc.date.issued1999-10-25en
dc.identifier.urihttp://hdl.handle.net/2122/5284en
dc.description.abstractTsunamis are gravity waves propagating at the ocean surface: they are characterized by wavelengths that may vary from 10 to several hundred of km and by periods from 5 to 45 minutes. Tsunamis are generated, in most cases, by earthquakes that produce large vertical displacement of the ocean bottom and, less frequently, by submarine landslide and by volcanic explosions. The aim of this thesis is to show that tsunami modeling and observation can give complementary information on the tsunamigenic seismic source. The different phases of a tsunami (i.e. generation, propagation and impact on the coast) are modeled by means of numerical methods (both finite-elements and finite- differences) that solves the shallow water equations. The simulations of several tsunamis, for which observations are available, show that tsunami data (even of qualitative type) are able to constrain the epicenter, the orientation of the fault plane and the co-seismic slip distribution. Direct simulations allow us to validate source models for the Gargano 1627, Sicily 1693, Calabria 1783 and Messina 1908 (southern Italy) historical tsunamis. Furthermore we developed an inversion method, that makes use of near-field run-up heights measured after the event, to determine the co-seismic slip distribution on the source fault: we applied this method to the 1992 Nicaragua and to 1908 Messina (southern Italy) tsunamis. Finally, through the study of the last catastrophic tsunami, occurred in Papua New Guinea on July 17 1998, we propose a methodology that, by means of run-up data solely, allows for the determination of the position, dimensions and amplitude of the source.en
dc.description.sponsorshipINSTITUT PHYSIQUE DU GLOBE DE PARISen
dc.language.isoFrenchen
dc.subjectnumerical modelingen
dc.subjectsource parametersen
dc.subjectseismic hazarden
dc.subjectseismic sourceen
dc.subjecttsunamien
dc.subjecttsunami hazarden
dc.titleCaractérisation des sources sismiques par étude des tsunamisen
dc.typethesisen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.relation.referencesAbe, K., 1979. Size of great earthquakes of 1837-1974 inferred from tsunami data, J. Geophys. Res., 84, 1561-1568. Abe, K., 1995. Estimate of tsunami run-up heights from earthquake magnitudes, In “Tsunami: progress in prediction, disaster prevention and warning” (Y. Tsuchiya and N. Shuto, eds.), Kluwer Academic Publishers, Dordrecht, The Netherland, pp. 21-35. Cotton, F., and Campillo M., 1995. Frequency domain inversion of strong motions: application to the 1992 Landers earthquake, J. Geophys. Res., 100, 3961-3975. Dahlen F.A. and Tromp J., 1998. Theoretical global seismology, Princeton Univ. Press, 944 pp. Fukao, Y., 1979. Tsunami earthquakes and subduction processes near deep-sea trenches, J. Geophys. Res., 84, 2303-2314. Geist, E.L., 1998. Local tsunamis and earthquake source parameters, Advances in Geophysics, 39, 117-209. Geist, E.L. and Yoshioka S., 1996. Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadian margin, Natural Hazards, 13, 151-177. Gonzalez, F.I. and Kulikov Y.A., 1993. Tsunami dispersion observed in the deep-ocean, in Tsunamis in the world, S. Tinti (Editor), Kluwer Academic Publishers, Dordrecht, The Netherlands, 7-16. Gonzalez, F.I., Mader, C.L., Eble M.C. and Bernard E.N., 1991. The 1987-1988 Alaskan Bight tsunamis: deep ocean data and model comparisons, Natural Hazards, 4, 119-139. Heinrich, Ph., Guibourg S., Mangenay A. and Roche R., 1998a. Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano, J. Phys. Chem. Earth, 24, 163-168. Heinrich, Ph., Mangenay A., Guibourg S. and Roche R., 1998b. Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles, Geophys. Res. Lett., 25, 3697-3700. Heinrich, Ph., Mangenay A., Boudon G. and Roche R., 1999. Modéliser un raz de marée crée par un volcan, La Recherche, 318, 66-71. Hidayat, D., Barker J.S. and Satake K., 1995. Modeling the seismic source and tsunami generation of the December 12, 1992 Flores Island, Indonesia, earthquake, Pure Appl. Geophys., 144, 537-554. Ihmlé, P.F., 1996. Monte Carlo slip inversion in the frequency domain: application to the 1992 Nicaragua slow earthquake, Geophys. Res. Lett., 23, 913-916. Ihmlé, P. F., and Ruegg J.C., 1997. Source tomography by simulated annealing using broad-band surface waves and geodetic data: application to the MW=8.1 Chile 1995 event, Geophys. J. Int., 131, 146-158. Imamura, F., Gica E., Takahashi T. and Shuto N., 1995. Numerical simulation of the 1992 Flores tsunami: interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island, Pure Appl. Geophys., 144, 555-568. Johnson, J.M., 1998. Heterogeneous coupling along Alaska-Aleutians as inferred from tsunami, seismic,and geodetic inversions, Advances in Geophysics, 39, 1-116. Johnson, J.M., Satake K., Holdahl S.R. and Sauber, 1996. The 1964 Prince Williams Sound earthquake: joint inversion of tsunami and geodetic data, J. Geophys. Res., 101, 523-532. Kajura, K., 1963. The leading wave of a tsunami, Bull. Earthquake Res. Inst., 41, 535-571. Kajura, K., 1981. Tsunami energy in relation to parameters of the earthquake fault model, Bull. Earthquake Res. Inst., 56, 415-440. Kanamori, H., 1972. Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter., 6, 246-259. Kanamori, H., and Kikuchi M., 1993. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments, Nature, 361, 714-716. Kikuchi, M., and Kanamori H., 1995. The Shikotan earthquake of october 4, 1994: lithospheric earthquake, Geophys. Res. Lett., 22, 1025-1028. Kowalik, Z., 1997. Landslide Generated Tsunami in Skagway, Alaska, Science Tsunami Hazard, 15, 89-106. Kowalik, Z., and Murty T.S., 1993. Numerical simulation of two-dimensional tsunami run-up, Marine Geodesy,16, 87-100. Lander, James F. and Patricia A. Lockridge, 1989. United States Tsunamis. Publication 41-2. U.S. Department of Commerce. August 1989. Lay, T., and Kanamori, H., 1981. An asperity model of large earthquake sequences, In “Earthquake prediction – an international review” (D.W. Simpson, P.G. Richards, eds.). American Geophysical Union, Washington, DC, pp. 579-592. Lundgren, P.R., and Okal E.A., 1988. Slab Decoupling in the Tonga Arc: The June 22, 1977, Earthquake, J. Geophys. Res., 93, 13355- Ma, K.-F., Kanamori, H. and Satake, K.,1999. Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data, J. Geophys. Res. 104, 13153- Manshina, L. and Smylie D.E., 1971. The displacements fields of inclined faults, Bull. Seismol. Soc. Am., 61, 1433-1440. Massonnet, D., Rossi M., Carmona C., Adragna F., Peltzer G., Feigl K. and Rabaute T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364, 138-142. Meyer, B., Armijo R., Massonnet D., de Chabalier J.B., Delacourt C., Ruegg J.C., Achache J., Briole P. and Papanastassiou D., 1996. The 1995 Grevena (Northern Greece) earthquake: Fault model constrained with tectonic observation and SAR interferometry, Geophys. Res. Lett., 23, 2677-2680. Michel, R., Avouac J.-P.; Taboury J., 1999. Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake, Geophys. Res. Lett. 26, 875-878. Newman, A.V. and Okal E.A., 1998. Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes, J. Geophys. Res.,103, 26885- 26898. Okada Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135-1154. Okal, E.A., 1982. Mode-wave equivalence and other asymptotic problems in tsunami theory,Phys. Earth Planet. Int., 30, 1-11. Okal E.A., 1988. Seismic parameters controlling far-field tsunami amplitudes: a review, Natural Hazards, 1, 67-96. Okal, E.A., 1999. The 1998 Papua New Guinea tsunami: an overview, Proc. of the International Conference on Tsunamis, 26-28 may, Paris-France. Okal, E.A. and Talandier J., 1987. Mn: theory of a variable-period mantle magnitude, Geophys. Res. Lett., 14, 836-839. Okal, E.A. and Talandier J., 1989. Mn: a variable period mantle magnitude, J. Geophys. Res., 94, 4169-4193. Okal, E.A. and Talandier J., 1991. Single station estimate of the seismic moment of the1960 Chilean and 1964 Alaskan earthquakes, using mantle magnitude, Pure and Appl. Geophys., 136, 103-126. Okal, E.A., Piatanesi A. and Heinrich Ph., 1999. Tsunami detection by satellite altimetry, J. Geophys. Res., 104, 599-615. Pelayo, A.M., and Wiens D.A., 1992. Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge, J. Geophys. Res., 97, 15321-15337. Peyret, R., and Taylor T.D., Computational methods for fluid flow, Springer-Verlag, New York, 1983. Piatanesi, A., Tinti S., and Gavagni I., 1996. The slip distribution of the 1992 Nicaragua earthquake from tsunami run-up data, Gephys. Res. Lett.,23, 37-40. Piatanesi, A., and Tinti S., 1998. A revision of the eastern Sicily earthquake and tsunami, J. Geophys. Res.,103, 2749-2758. Piatanesi, A., Heinrich Ph. And Tinti S., 1999. The October 4, 1994 Shikotan (Kurile Islands) tsunamigenic earthquake: an open problem on the source mechanism, Pure App. Geophys., 154, 555-574. Piatanesi, A., Tinti S. and Bortolucci E., 1999. Finite-element simulations of the 28 December 1908 Messina Strait tsunami, J. Phys. Chem. Earth (A),24, 145-150. Rabinovich, A., 1997. Spectral analysis of tsunami waves: separation of source and topography effects, J. Gephys. Res., 102, C6, 12663-12676. Rzadkiewicz, S. and Heinrich Ph., 1999. Numerical simulation of the 1979 Nice tsunami, Pure Appl. Geophys. (submitted). Reymond, D., Hyvernaud O. and Talandier J., 1991. Automatic detection, location and quantification of earthquakes: application to tsunami warning, Pure Appl. Geophys., 135, 361-382. Ritsema, J., Ward S.N. and Gonzalez F.I., 1995. Inversion of deep-ocean tsunami records for 1987 to 1988 gulf of Alaska earthquake parameters, Bull. Seismol. Soc. Am., 85, 747-754. Satake, K., 1987. Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiment, J. Phys. Earth, 35, 241-254. Satake, K., 1989. Inversion of tsunami wave forms for the estimation of Heterogeneous fault motion of large submarine earthquakes: the 1968 Tokachi-oki and the 1983 Japan Sea earthquakes, J. Geophys. Res., 94, 5627-5636. Satake, K., 1993. Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data, J. Geophys. Res., 98, 4553-4565. Satake, K., and Tanioka, Y., 1999. Sources of tsunami and tsunamigenic earthquakes insubduction zones, Pure Appl. Geophys., 154, 467-483. Schindele, F., Reymond, D., Gaucher, E., and Okal, E.A., 1995. Analysis and Automatic processing in near-field of eight 1992-1994 tsunamigenic earthquakes: improvements towards real-time tsunami warning, Pure Appl. Geophys., 144, 381-408. Talandier, J. and Okal A.E., 1989. An algorithm for automated tsunami warning in French Polynesia, based on mantle magnitudes, Bull. Seismol. Soc. Am., 72, 1-14. Talandier, J., Reymond D. and Okal A.E., 1987. Mm: use of a variable-period mantle magnitude for the rapid one-station estimation of teleseismic moments, Geophys. Res. Lett., 14, 840-843. Tinti, S. and Gavagni I., 1995. A smoothing algorithm to enhance finite-element tsunami modeling: an application to the 5 February 1783 Calabrian case, Italy, Natural Hazards,12, 161-197. Tinti S. and Piatanesi A., 1995. The wave-propagator in finite element modeling tsunamis, Marine Geodesy, 18, 273-298. Tinti, S. and Piatanesi A., 1996a. Numerical simulations of the tsunami induced by the1627 earthquake affecting Gargano, southern Italy, J. Geodynamics, 21, 141-160. Tinti, S., and Piatanesi A., 1996b. Finite-element simulations of the 5 February 1783 Calabrian tsunami, J. Phys. Chem. Earth, 21, 12, 39-43. Tinti, S., and Vannini C., 1995. Tsunami trapping near circular islands, Pure App. Geophys., 144, 595- Tinti, S., Gavagni I. and Piatanesi A., 1994. A finite-element numerical approach for modeling tsunamis, Annali di geofisica, 5, 1009-1026. Tinti, S., Piatanesi A. and Maramai A., 1997. Numerical simulations of the 1627 Gargano tsunami (southern Italy) to locate the earthquake source, in Hebenstreit, G. (ed.), Perspectives on Tsunami Hazard Reduction, 115-131, Kluwer Academic Publisher, The Netherlands. Tinti, S., Armigliato A., Bortolucci E. and Piatanesi A., 1999a. Identification of the source fault of the 1908 Messina earthquake through tsunami modelling. Is it a possible task?, J. Phys. Chem. Earth (B), 24, 417-421. Tinti,S., Bortolucci E and Armigliato A., 1999b, Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy, Bull. Volcanol., 61, 121- Tsuji, Y., Matsutomi H., Imamura F., Takeo M., Kawata Y., Matsuyama M., Takahashi T., Harjadi S. and Harjadi P., 1995. Damage to coastal villages due to the 1992 Flores Island earthquake tsunami, Pure App. Geophys., 144, 481-524. Ward, S.N., 1980. Relationships of tsunami generation and an earhquake source, J. Phys. Earth, 28, 441-474. Ward, S.N., 1981. On tsunami nucleation: I. A point source, J. Geophys. Res.,86, 7895-7900. Ward, S.N., 1982. On tsunami nucleation: II. An instantaneous modulated line source, Phys. Earth Planet Inter., 27, 273-285. Webb, S.C., Zhang X. and Crawford W., 1991. Infragravity waves in the deep ocean, J. Geophys. Res., 96, C2, 2723-2736. Zobin, V.M., 1997. The rupture history of the MW=8.0 Jalisco, Mexico, earthquake of 1995 October 9, Geophys. J. Int., 130, 220-228.en
dc.type.methodPhDen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.fulltextopenen
dc.contributor.authorPiatanesi, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypethesis-
item.cerifentitytypePublications-
item.languageiso639-1fr-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
PhD_thesis_Piatanesi.pdf30.04 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

262
checked on Apr 24, 2024

Download(s) 1

2,767
checked on Apr 24, 2024

Google ScholarTM

Check