Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5251
DC FieldValueLanguage
dc.contributor.authorallTondi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallAchauer, U.; EOST, Strasbourg - Franceen
dc.contributor.authorallLandes, M.; Indiana University, Indiana - USAen
dc.contributor.authorallDavi', R.; University College Dublin, Dublin - IRELANDen
dc.contributor.authorallBesutiu, L.; Romanian Academy, Bucharest - Romaniaen
dc.date.accessioned2009-11-13T07:38:33Zen
dc.date.available2009-11-13T07:38:33Zen
dc.date.issued2009-11-12en
dc.identifier.urihttp://hdl.handle.net/2122/5251en
dc.descriptionAn edited version of this paper was published by AGU. Copyright (2009) American Geophysical Unionen
dc.description.abstractThe Vrancea seismogenic zone in Romania exhibits an intense intermediate-depth seismicity, confined to a relatively small, roughly cylindrical and elongated region, whose origin is still under debate. Our three-dimensional P and S wave velocity and density images put additional physical constraints on the existing tectonic models to a depth of 200 km. The results appear to substantiate a combination of lithospheric delamination and oceanic subduction. For our analysis, we apply the tomographic inversion method of sequential integrated inversion (SII) to P and S first arrivals from active source data collected during the VRANCEA99 and VRANCEA2001 seismic refraction experiments, local earthquake data collected during the Carpathian Arc Lithosphere X-Tomography (CALIXTO) experiment and recent gravity measurements of the studied area. The reconstructed models, which explain both travel times and gravity data, show a subducting slab which exhibits fast Vp, fast Vs, high density, and a low Vp/Vs ratio consistent with the cold downgoing plate. We associate intermediate-depth seismicity with the observed sharp lateral Vp/Vs variations presumably generated by contact between the dense and cold slab and the lithospheric mantle in the shallower part or the asthenosphere in the deeper part. This contrast is particularly evident between 100 and 150 km depth, where the maximum historical seismic energy release is concentrated. Our results indicate the diagnostic power of a combined interpretation of 3-D Vp, Vs, Vp/Vs, and density models.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/114 (2009)en
dc.relation.isversionofhttp://www.agu.org/journals/jb/jb0911/2008JB005992/en
dc.subjectjoint inversionen
dc.subjectdensityen
dc.titleUnveiling seismic and density structure beneath the Vrancea seismogenic zone, Romaniaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB11307en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.identifier.doi10.1029/2008JB005992en
dc.relation.referencesBassin, C., G. Laske, and G. Masters (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract S12A-03. Besutiu, L., and L. Zlangneau (2006), Plate boundaries and lithosphere dynamics in the non-tidal gravity change on the Romanian territory, Geophys. Res. Abstr., 8, 08432. Besutiu, L., G. Ghioca, L. Zlangneau, and D. Zugravescu (2004), Considerations on the lithosphere compartments on the Romanian territory: Dynamics and some seismotectonics consequences, Ber. Inst. Erdwiss. K.-F. Univ. Graz, 9, 79–81. Bird, P. (1979), Continental delamination and the Colorado Plateau, J. Geophys. Res., 84(B13), 7561–7571. Brandabur, T., C. Ghenea, M. Săndulescu, and M. Stefănescu (1971), Neotectonic map of S. R. of Romania, Geol. Inst., Bucharest. Bulant, P. (1996), Two-point ray tracing in 3-D, Pure Appl. Geophys., 148, 421–447, doi:10.1007/BF00874574. Ĉerveny, V., L. Klimes, and I. Pseněik (1988), Complete seismic-ray tracing in three-dimensional structures, in Seismological Algorithms: Computational Methods and Computer Programs, edited by D. J. Doornbos, pp. 89–168, Academic, London. Chalot-Prat, F., and R. Girbacea (2000), Partial delamination of continental mantle lithosphere, uplift-related crust-mantle decoupling, volcanism and basin formation: a new model for the Pliocene-Quaternary evolution of the southern East-Carpathians, Romania, Tectonophysics, 327, 83–107, doi:10.1016/S0040-1951(00)00155-4. Cloetingh, S. A. P. L., E. Burov, L. Matenco, G. Toussaint, G. Bertotti, P. A. M. Andriessen, M. J. R. Wortel, and W. Spakman (2004), Thermo-mechanical controls on the mode of continental collision in the SE Carpathians (Romania), Earth Planet. Sci. Lett., 218, 57–76, doi:10.1016/S0012-821X(03)00645-9. Du, W. X., C. H. Thurber, and D. Eberhart-Phillips (2004), Earthquake relocation using cross-correlation time delay estimates verified with the bispectrum method, Bull. Seismol. Soc. Am., 94, 856–866, doi:10.1785/0120030084. Featherstone, W. E., M. Dentith, and J. F. Kirby (2000), The determination and application of vector gravity anomalies, Explor. Geophys., 31, 109–113, doi:10.1071/EG00109. Fuchs, K., et al. (1979), The Romanian earthquake of March 4, 1977: II. Aftershock and migration of seismic activity, Tectonophysics, 53(3–4), 225–247, doi:10.1016/0040-1951(79)90068-4. Giunchi, C., R. Sabadini, E. Boschi, and P. Gasperini (1996), Dynamic models of subduction: Geophysical and geological evidence in the Tyrrhenian Sea, Geophys. J. Int., 126(2), 555–578, doi:10.1111/j.1365-246X.1996.tb05310.x. Hauser, F., V. Raileanu, W. Fielitz, A. Bala, C. Prodehl, G. Polonic, and A. Schulze (2001), VRANCEA99—The crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania, Tectonophysics, 340, 233–256, doi:10.1016/S0040-1951(01)00195-0. Ioane, D., and I. Radu (1995), Global geopotential models and gravity data for the territory of Romania, in Gravity and Geoid: Joint Symposium of the International Gravity Commission and the International Geoid Commission, Graz, Austria, September 11–17, 1994, edited by H. Sünkel and I. Marson, pp. 640–646, Springer, Berlin. Ismail-Zadeh, A., G. Panza, and B. M. Naimark (2000), Stress in the descending relic slab beneath the Vrancea region, Romania, Pure Appl. Geophys., 157, 111–130, doi:10.1007/PL00001090. Ismail-Zadeh, A., G. Schubert, I. Tsepelev, and A. Korotkii (2008), Thermal evolution and geometry of the discending lithosphere beneath the SE-Carpathians: An insight from the past, Earth Planet. Sci. Lett., 273, 68–79, doi:10.1016/j.epsl.2008.06.012. Ivan, M. (2007), Attenuation of P and pP waves in Vrancea area, Romania, J. Seismol., 11, 73–85, doi:10.1007/s10950-006-9038-7. Knapp, J. H., C. C. Knapp, V. Raileanu, L. Matenco, V. Mocanu, and C. Dinu (2005), Crustal constraints on the origin of mantle seismicity in the Vrancea Zone, Romania: The case for active continental delamination, Tectonophysics, 410, 311–323, doi:10.1016/j.tecto.2005.02.020. Landes, M., W. Fielitz, F. Hauser, M. Popa, and the CALIXTO Group (2004), 3-D upper crustal tomographic structure across the Vrancea seismic zone, Romania, Tectonophysics, 382, 85–102, doi:10.1016/j.tecto.2003.11.013. Lillie, R. J., M. Bielik, V. Babuska, and J. Plomerova (1994), Gravity modelling of the lithosphere in the eastern Alpine–western Carpathian-Pannonian Basin region, Tectonophysics, 231, 215–235, doi:10.1016/0040-1951(94)90036-1. Lomax, A., J. Virieux, P. Volant, and C. Berge (2000), Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in Advances in Seismic Event Location, edited by C. H. Thurber and N. Rabinowitz, pp. 101–134, Kluwer, Amsterdam. Martin, M., J. R. R. Ritter, and the CALIXTO Working Group (2005), High resolution teleseismic body wave tomography beneath SE Romania, I. Implication for three-dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model, Geophys. J. Int., 162, 448–460, doi:10.1111/j.1365-246X.2005.02661.x. Martin, M., F. Wenzel, and the CALIXTO Working Group (2006), High resolution teleseismic body wave tomography beneath SE Romania, II. Imaging of a slab detachment scenario, Geophys. J. Int., 164, 579–595, doi:10.1111/j.1365-246X.2006.02884.x. Mosegaard, K., and A. Tarantola (1995), Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12,431–12,447, doi:10.1029/94JB03097. Nataf, H. C., and Y. Ricard (1996), 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modelling, Phys. Earth Planet. Inter., 95, 101–122, doi:10.1016/0031-9201(95)03105-7. Nicolescu, A., and V. Rosca (1991), The national Bouguer anomaly map of Romania at the scale 1:1.000.000, Geol. Inst. of Romania, Bucharest. Pohánka, V. (1998), Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density, Geophys. Prospect., 46, 391–404, doi:10.1046/j.1365-2478.1998.960335.x. Royden, L. H. (1988), Late Cenozoic tectonics of the Pannonian basin system, in The Pannonian Basin: A Study in Basin Evolution, edited by L. H. Royden and F. Horwath, AAPG Mem., 45, 27–48. Sacks, P. E., and D. T. Secor Jr. (1990), Delamination in collisional orogens, Geology, 18(10), 999–1002, doi:10.1130/0091-7613(1990)018<0999:DICO>2.3.CO;2. Sandulescu, M., H. Krautner, M. Borcos, S. Nastaseanu, D. Patrulius, M. Stefanescu, C. Ghenea, M. Lupu, I. Bercia, and F. Marinescu (1978), Geological map of Romania, scale 1:1,000,000, Inst. of Geol. and Geophys., Bucharest. Sperner, B., F. Lorenz, K. Bonjer, S. Hettel, B. Müller, and F. Wenzel (2001), Slab break-off—Abrupt cut or gradual detachment? New insights from the Vrancea Region (SE Carpathians, Romania), Terra Nova, 13, 172–179, doi:10.1046/j.1365-3121.2001.00335.x. Sperner, B., D. Ioane, and R. J. Lillie (2004), Slab behaviour and its surface expression: new insights from gravity modelling in the SE Carpathians, Tectonophysics, 382, 51–84, doi:10.1016/j.tecto.2003.12.008. Stammler, K. (1993), Seismichandler—Programmable multichannel data handler for interactive and automatic processing of seismological analyses, Comput. Geosci., 19(2), 135–140, doi:10.1016/0098-3004(93)90110-Q. Tarantola, A. (2005), Inverse Problem Theory and Mathods for Model Parameter Estimation, Soc. for Ind. and Appl. Math., Philadelphia, Pa. Tondi, R., and R. de Franco (2005), Seismic travel times inversion for 3D structures regularized with Sobolev norms, Inverse Probl., 21, 525–546, doi:10.1088/0266-5611/21/2/007. Tondi, R., and R. de Franco (2006), Accurate assessment of 3D crustal velocity and density parameters: Application to Vesuvius data sets, Phys. Earth Planet. Inter., 159, 183–201, doi:10.1016/j.pepi.2006.07.001. Tondi, R., R. de Franco, and R. Barzaghi (2000), Sequential integrated inversion of refraction and wide-angle reflection traveltimes and gravity data for two-dimensional velocity structures, Geophys. J. Int., 141, 679–698, doi:10.1046/j.1365-246x.2000.00104.x. Toussaint, G., E. Burov, and L. Jolivet (2004), Continental plate collision: Unstable vs. stable slab dynamics, Geology, 32, 33–36, doi:10.1130/G19883.1. Visarion, M., and L. Besutiu (2001), Fracturi transcrustale pe teritoriul Romaniei (Trans-crustal faults on the Romanian territory), Stud. Cercetari Geofiz., 39, 15–33. Wenzel, F., U. Achauer, D. Enescu, E. Kissling, R. Russo, V. Mocanu, and G. Musacchio (1998), Detailed look at the final stage of plate-break off is target of study in Romania, Eos Trans. AGU, 79(48), 589, doi:10.1029/98EO00427. Wortel, M. J. R., and W. Spakman (2000), Subduction and slab detachment in the Mediterranean-Carpathian region, Science, 290, 1910–1917, doi:10.1126/science.290.5498.1910. Zelt, C. A., and R. B. Smith (1992), Seismic traveltime inversion for 2-D crustal velocity structure, Geophys. J. Int., 108, 16–34, doi:10.1111/j.1365-246X.1992.tb00836.x. Zhang, J., and N. Toksoes (1998), Monte Carlo sampling of solutions to inverse problems, Geophysics, 63, 1726–1737, doi:10.1190/1.1444468.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorTondi, R.en
dc.contributor.authorAchauer, U.en
dc.contributor.authorLandes, M.en
dc.contributor.authorDavi', R.en
dc.contributor.authorBesutiu, L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentEOST, Strasbourg - Franceen
dc.contributor.departmentIndiana University, Indiana - USAen
dc.contributor.departmentUniversity College Dublin, Dublin - IRELANDen
dc.contributor.departmentRomanian Academy, Bucharest - Romaniaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptEOST, Strasbourg - France-
crisitem.author.deptIndiana University, Indiana - USA-
crisitem.author.deptUniversity College Dublin, Dublin - IRELAND-
crisitem.author.deptRomanian Academy, Bucharest - Romania-
crisitem.author.orcid0000-0001-9400-3904-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2008JB005992.pdf"Article in proof"5.58 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

24
checked on Feb 10, 2021

Page view(s) 50

464
checked on Apr 17, 2024

Download(s)

35
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric