Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5205
DC FieldValueLanguage
dc.contributor.authorallPesci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCasula, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallLoddo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCenni, N.; Dipartimento di Fisica - Settore Geofisica - Univ. di bolognaen
dc.contributor.authorallBianchi, M.G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallTeza, G.; Dipartimento di Geoscienze - Univ. di Padovaen
dc.date.accessioned2009-10-21T14:53:44Zen
dc.date.available2009-10-21T14:53:44Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5205en
dc.description.abstractThe global positioning system (GPS), in both static and kinematic modes, allows a highly accurate measurement of point coordinates and therefore is widely used for monitoring both slow and fast surface deformations. The information provided by a GPS network can be used at the regional scale, to evaluate tectonic and seismogenic structure evolutions [Hunstad et al., 1999; Pietrantonio and Riguzzi, 2004], such as the estimation of deformation rates in the central Apennine chain [Pesci and Teza, 2007], or at larger scale, to monitor gravitational macroscopic effects due to, for example, rock-mass collapses, landslide activations or other instabilities [Mora et al., 2003; Tzenkov and Gospodinov, 2003; Squarzoni et al., 2005]. The accuracies of GPS measurements are generally a few millimeters for the horizontal coordinate components and sub-centimeters for the vertical ones. In fact, the elevation is highly influenced by atmospheric perturbations, involving zenith delays, which are difficult to be completely removed by means of data modeling. When referring to high accuracy, GPS surveying implies the precise measurements of the vectors between two or more receivers (baselines), the so-called relative positioning: data can be acquired on static and rapid-static conditions, which require GPS stations to be stationary. Several permanent GPS stations continuously operate on the Italian territory, belonging to different institutes like IGS (International GPS Service), EUREF (European Reference Frame), ASI (Agenzia Spaziale Italiana), INGV (Istituto Nazionale di Geofisica e Vulcanologia) and others [Serpelloni et al. 2006; Falco et al., 2007; Devoti et al., 2008]. Due to the high efficiency of this surveying methodology, in the last few years, the number of GPS permanent stations has rapidly increased and continues to expand; the Earth Science Department of Siena University, for example, installed 8 new stations in 2003 to study the tectonic processes in the Central-Northern Apennines [Cenni et al., 2004]. Also private GPS networks planned for commercial civil proposal exist; in particular the ASSOGEO s.r.l (Italian Trimble provider), established a dense GPS network for real time positioning by means of the VRS (Virtual Reference Station) concept [Hu et al., 2003] and work is still in progress to cover the whole Italian territory with a mean size of about 20-50 km.en
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia (INGV)en
dc.language.isoEnglishen
dc.relation.ispartofseries2009en
dc.relation.ispartofseries97en
dc.subjectGPS Permanent Networken
dc.subjectSubsidenceen
dc.titleTHE ASSOGEO GPS NETWORK TO MONITOR SURFACE VARIATION IN THE EMILIA ROMAGNA REGION (NORTH-CENTRAL ITALY): DATA MANAGEMENT, PRODUCTS AND PRELIMINARY RESULTSen
dc.typereporten
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.relation.referencesAltamimi, Z., Sillard, P. and Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for Earth Science Applications. Journal of Geophysical Research, 2214, doi:10.1029/2001JB000561. Altamimi Z., Boucher, C. and Gambis, D. (2005). Long-term Stability of the Terrestrial Reference Frame, Advances in Space Reseacrh 33(6): 342-349. Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B. and Boucher, C. (2007). ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. Journal of Geophysical Research, 112, B09401, doi:10.1029/2007JB004949. Anzidei, M., Casula, G., Galvani, A., Riguzzi, F., Pietrantonio, G., Serpelloni, E., Esposito, A., Pesci, A., Loddo, F., Massicci, A. and Del Mese, S. (2006). Le prime stazioni GPS permanenti INGV-CNT per il monitoraggio delle deformazioni crostali nell’area italiana. Quaderni di Geofisica, 39, pp. 1-46. Istituto Nazionale di Geofisica e Vulcanologia, Roma. Arca, S. and Beretta, G.P. (1985). Prima sintesi geodetico-geologica sui movimenti verticali del suolo nell’Italia Settentrionale (1897-1957). Bollettino di Geodesia e scienze affini, 44 (2), 125-156. Beutler, G., Mueller, I.I. and Neilan, R.E. (1994). The International GPS Service for Geodynamics (IGS): Development and start of official service on January 1, 1994. Bulletin Geodesique, 68, 39-70. Boehm, J., Werl, B. and Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry form European Centre for Medium Range Weather Forecasts operational analysis data, Journal of Geophysical Research, 111, B02406, doi:10.1029/2005JB003629. Bruyninx, C. (2004). The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists, GeoInformatics, 7, 32-35. Carminati, E. and Martinelli, G. (2002). Subsidence rates in the Po Plain, Northern Italy: the relative impact of natural and anthropic causation. Engineering Geology, 66, 241-255. Carminati, E., C. Doglioni, and D. Scrocca (2003), Apennines subduction-related subsidence of Venice (Italy), Geophys. Res. Lett., 30(13), 1717. Casula, G., Dubbini, M. and Galeandro, A. (2007). Modeling environmental bias and computing velocity field from data of Terra Nova Bay network in Antartica by means of a quasi-observation processing approach. U.S. Geological Survey and the National Academies, Short research paper, USGS OF-2007- 1041, doi:10.3133/of2007-1047.srp054. Colombo, O.L. (1986). Ephemeris errors of GPS satellites, Bulletin Geodesique, 60, 64–84. Colombetti, A. and Mazza, G. (1986). Le aree subsidenti nel territorio di Modena e rapporti con le variazioni del livello piezometrico della falda acquifera del sottosuolo. Atti Società dei Naturalisti e Matematici di Modena, 117, 15-30. Devoti R, Riguzzi F, Cuffaro M, Doglioni C (2008) New GPS constraints on the kinematics of the Apennines subduction. Earth Planet. Sci. Lett. 273(1-2): 163-174 Dong, D., Fang, P., Bock, Y., Cheng, M.K. and Miyazaki, S. (2002). Anatomy of apparent seasonal variation from GPS–derived site position. Journal of Geophysical Research 107 (B4), doi: 10.1029/2001JB000573. Dong, D., Herring, T.A. and King, R.W., (1998). Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 72 (4), 200-214. Estey, L.H. and Meertens, C.M. (1999). TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data, GPS Solutions, 3 (1), 42-49. Falco, L., Avallone, A., Cattaneo, M., Cecere, G., Cogliano, R., D'Agostino, N., D'Ambrosio, C., D'Anastasio, E., Selvaggi, G. (2007). The RING and Seismic Network: Data Acquisition of Co-located Stations. Eos Transactions AGU, 88(52). Feigl, K.L., King, R.W. and Jordan T.H. (1990). Geodetic Measurements of Tectonic Deformation in the Santa Maria Fold and Thrust Belt, California, Journal of Geophysical Research, 95 (B3), 2679-2699. Herring, T.A. (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solutions, 7, 194- 199. Herring, T.A., King, R.W. and McClusky, S.C. (2006a). GPS Analysis at MIT, GAMIT Reference Manual, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, Cambridge MA. Available at: http://chandler.mit.edu/~simon/gtgk/GAMIT_Ref_10.3.pdf. Accessed 23 Mar 2009. 16 Herring,T.A., King, R.W. and McClusky, S.C. (2006a). GPS Analysis at MIT, GAMIT Reference Manual, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, Cambridge MA. Available at: http://chandler.mit.edu/~simon/gtgk/GAMIT_Ref_10.3.pdf. Accessed 23 Mar 2009. Herring, T.A., King, R.W. and McClusky, S.C. (2006b). Global Kalman filter VLBI and GPS analysis program, GLOBK Reference Manual, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, Cambridge MA. Available at: http://chandler.mit.edu/~simon/gtgk/GLOBK_Ref_10.3.pdf. Accessed 23 Mar 2009. Hu, G.R., Khoo, H.S., Goh, P.C. and Law, C.L. (2003). Development and assessment of virtual reference stations for RTK positioning. Journal of Geodesy, 77 (5-6), 292-302. Hunstad, I., Anzidei, M., Cocco, M., Baldi, P., Galvani, A. and Pesci, A. (1999). Modelling Coseismic Displacements During The 1997 Umbria–Marche Earthquake (Central Italy). Geophysical Journal International, 139, 283-295. Kenyeres, A. and Bruyninx, C., (2004). Monitoring of the EPN Coordinate Time Series for Improved Reference Frame Maintenance. GPS Solutions, 8 (4), 200-209. Lyard, F., Lefevre, F., Letellier, T., Francis, O. (2006). Modelling the global ocean tides : insights frpm FES2004. Ocean Dynamics, 56, 394-415. Mazzotti, S., Dragert, H., Hyndman, R.D., Miller, M.M. and Henton, J.A. (2002). GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth and Planetary Sciences Letters, 198 (1-2), 41-48. Mazzotti, S., Dragert, H., Henton, J., Schmidt, M., Hyndman, R.D., James,T.S., Lu, Y. and Craymer, M. (2003). Current tectonics of northern Cascadia from a decade of GPS measurements. Journal of Geophysical Research, 108, 2554, doi: 10.1029/2003JB002653. McCarthy, D.D. and Petit, G. (2003). IERS Conventions (2003). IERS Technical Note 32, Verlag des Budesamts fur Kartographie und Geodasie, Frankfurt. Melbourne, W.G. (1985). The Case for Ranging in GPS Based Geodetic Systems. In: Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System (C. Goad, ed.), pp. 373-386, US Department of Commerce, Rockville. Mora, P., Baldi, P., Casula, G., Fabris, M., Ghiotti, M., Mazzini, E. and Pesci, A. (2003). Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Engineering Geology, 68, 103-121. Pesci, A., Teza, G. (2007). Strain rate computation, results validation and application: the kinematics of Central Apennines from GPS velocities. Bollettino di Geodesia e Scienze Affini, 56 (2), 69-88. Pesci, A., Teza, G., Casula, G. (2009) Improving strain rate estimation from velocity data of non-permanent GPS stations: the Central Apennine study case (Italy). GPS solutions. In press. DOI: 10.1007/s10291- 009-0118-3. Pietrantonio, G., Riguzzi, F. (2004). Three-dimensional strain tensor estimation by GPS observations: methodological aspects and geophysical applications. Journal of Geodynamics, 38 (1), 1-18. Selvaggi, G., Mattia, M., Avallone, A., D’Agostino, N., Anzidei, M., Cantarero, M., Cardinale, V., Castagnozzi, A., Casula, G., Cecere, G., Cogliano, R., Criscuoli, F., D’Ambrosio, C., D’Anastasio, E., De Martino, P., Del Mese, S., Devoti, R., Falco, L., Galvani, A., Giovani, L., Hunstad, I., Massucci, A., Minichiello, F., Memmolo, A., Migliari, F., Moschillo, R., Obrizzo, F., Pietrantonio, G., Pignone, M., Pulvirenti, M., Rossi, M., Riguzzi, F., Serpelloni, E., Tammaro, U. and Zarrilli, L., (2006). La Rete Integrata Nazionale GPS (RING) dell’INGV: un’infrastruttura aperta per la ricerca scientifica. In: Atti della 10.a Conferenza ASITA, Bolzano, 1749-1754. Serpelloni, E., Casula, G., Galvani, A., Anzidei, M., Baldi, P. (2006). Data analysis of permanent GPS networks in Italy and surrounding regions:application of a distributed processing approach. Annals Of Geophysics, 49 (4/5), 853-863. Sherneck, H.G. (1991). A parameterised solid earth tide model and ocean tide loading effect for global geodetic baseline measurements, Geophysical Journal International, 106, 677-694. Squarzoni, C., Delacourt, C., Allemand, P. (2005a). Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Engineering Geology, 79 (3-4), 215-229. Squarzoni, C., Genevois, R., Rocca, M. (2005b). Finite differences stability model of the Sant’Andrea landslide (Italy). In: Proceedings of the 11th International Conference and Field Trip on Landslides (ICFL), 1-10 September, 2005, Norway (K. Senneset, K. Flaate, and J.O. Larsen, eds.), pp. 335-341. Stramondo, S., Saroli, M., Tolomei, C., Moro, M., Doumaz, F., Pesci, A., Loddo, F., Baldi, P., Boschi, E. (2006). Surface movements in Bologna (Po Plain - Italy) detected by multitemporal DInSAR. Remote Sensing of Environment, 110, 304-316. Tzenkov, T., Gospodinov, S. (2003). Geometric analysis of geodetic data for investigation of 3D landslide deformations. Natural Hazard Review, 4 (2), 78-81. 17 Wubbena, G. (1985). Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements. In: Proceedings of First International Symposium on Precise Positioning with the Global Positioning System (C. Goad, ed.), pp. 403–412, US Department of Commerce, Rockville.en
dc.description.obiettivoSpecifico1.9. Rete GPS nazionaleen
dc.description.fulltextopenen
dc.contributor.authorPesci, A.en
dc.contributor.authorCasula, G.en
dc.contributor.authorLoddo, F.en
dc.contributor.authorCenni, N.en
dc.contributor.authorBianchi, M.G.en
dc.contributor.authorTeza, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDipartimento di Fisica - Settore Geofisica - Univ. di bolognaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentDipartimento di Geoscienze - Univ. di Padovaen
item.openairetypereport-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_93fc-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di Fisica - Settore Geofisica - Univ. di bologna-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptDipartimento di Geoscienze - Univ. di Padova-
crisitem.author.orcid0000-0003-1863-3132-
crisitem.author.orcid0000-0001-7934-2019-
crisitem.author.orcid0000-0002-1153-1021-
crisitem.author.orcid0000-0002-7269-123X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Reports
Files in This Item:
File Description SizeFormat
rapporto97.pdfreport1.07 MBAdobe PDFView/Open
Show simple item record

Page view(s) 5

565
checked on Apr 24, 2024

Download(s) 20

407
checked on Apr 24, 2024

Google ScholarTM

Check