Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5179
DC FieldValueLanguage
dc.contributor.authorallLombardo, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallHarris, A. J. L.; University of Hawaiien
dc.contributor.authorallCalvari, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2009-09-16T12:56:31Zen
dc.date.available2009-09-16T12:56:31Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/5179en
dc.description.abstractHigh spatial resolution hyperspectral measurements of volcanic thermal anomalies allow for an unconstrained solution of a two-component thermal model. This can be used for identification of lava flow emplacement style and the calculation of lava flow heat and volume flux. The multispectral infrared and visible imaging spectrometer (MIVIS) is an airborne sensor equipped with 72 bands in the short infrared range and 10 bands in the thermal infrared region of the spectrum. We used MIVIS acquired for Mount Etna (Italy) during the July–August 2001 eruption to solve the dual band equations in an unconstrained fashion using three bands of unsaturated data. Our results suggest a complex thermal structure for Etnean lava flows. This is characterized by a downflow transition from a lightly crusted active channel to a more heavily crusted distal section, both surrounded by zones of stagnant cooling flow where exposed molten material is absent and maximum temperatures are thus lower. The total flow field effusion rate obtained for 29 July 2001 (0700 local time) of 8–16 m3/s is in excellent agreement with that obtained from ground-based measurements and Advanced Very High Resolution Radiometer data. Flow-by-flow effusion rates obtained from the MIVIS data vary depending on whether the vent is linked to the central conduit or the dyke that was injected from greater depth, as well as vent elevation, with lower elevation vents experiencing higher effusion rates.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/114(2009)en
dc.subjecteffusion rateen
dc.subjectsatellite measurementsen
dc.titleSpatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB02208en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.identifier.doi10.1029/2008JB005648en
dc.relation.referencesAllard, P. (1997), Endogenous magma degassing and storage at Mount Etna, Geophys. Res. Lett., 24, 2219– 2222, doi:10.1029/97GL02101. Andres, R. J., and W. I. Rose (1995), Description of thermal anomalies on two active Guatemalan volcanoes using Landsat Thematic Mapper imagery, Photogramm. Eng. Remote Sens., 61, 775– 782. Bailey, J. E., A. J. L. Harris, J. Dehn, S. Calvari, and S. K. Rowland (2006), The changing morphology of an open lava channel on Mt. Etna, Bull. Volcanol., 68, 497– 515, doi:10.1007/s00445-005-0025-6. Behncke, B., and M. Neri (2003), The July August 2001 eruption of Mt. Etna (Sicily), Bull. Volcanol., 65, 461 – 476, doi:10.1007/s00445-003- 0274-1. Bogliolo, M. P., S. Teggi, M. F. Buongiorno, and S. Pugnaghi (1998), Retrieving ground reflectance from MIVIS data: A case study on Vulcano island (Italy), paper presented at 1st EARSeL Workshop on Imaging Spectroscopy, Remote Sensing Lab., Univ. of Zurich, Switzerland. Buongiorno, M. F., V. J. Realmuto, and D. Fawzi (2002), Recovery of spectral emissivity from thermal infrared multispectral scanner imagery acquired over a mountainous terrain: A case study from Mount Etna Sicily, Remote Sens. Environ., 79, 123 – 133, doi:10.1016/S0034- 4257(01)00246-2. Calvari, S., and H. Pinkerton (1998), Formation of lava tubes and extensive flow field during the 1991 – 93 Chronology of the 2002 – 2003 flank eruption at Stromboli volcano (Italy) and complex volcanic processes reconstructed from direct observations and surveys with a hand-held thermal camera eruption of Mount Etna, J. Geophys. Res., 103(B11), 27,291–27,302, doi:10.1029/97JB03388. Calvari, S., and H. Pinkerton (2004), Birth, growth and morphologic evolution of the ‘‘Laghetto’’ cinder cone during the 2001 Etna eruption, J. Volcanol. Geotherm. Res., 132, 225 – 239, doi:10.1016/S0377-0273(03)00347-0. Calvari, S., M. Coltelli, M. Neri, M. Pompilio, and V. Scribano (1994), The 1991–93 Etna eruption: Chronology and lava flow field evolution, Acta Vulcanol., 4, 1– 14. Calvari, S., et al. (2001), Multidisciplinary approach yields insight into Mt. Etna eruption, Eos Trans. AGU, 82(52), 653 – 656, doi:10.1029/ 01EO00376. Calvari, S., L. Spampinato, L. Lodato, A. J. L. Harris, M. R. Patrick, J. Dehn, M. R. Burton, and D. Andronico (2005), Chronology and complex volcanic processes during the 2002– 2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera, J. Geophys. Res., 110, B02201, doi:10.1029/ 2004JB003129. Calvari, S., L. Spampinato, and L. Lodato (2006), The 5 April 2003 vulcanian paroxysmal explosion at Stromboli volcano (Italy) from field observations and thermal data, J. Volcanol. Geotherm. Res., 149, 160– 175, doi:10.1016/j.jvolgeores.2005.06.006. Carr, M. H. (1986), Silicate volcanism on Io, J. Geophys. Res., 91, 3521– 3532, doi:10.1029/JB091iB03p03521. Coltelli, M., C. Proietti, S. Branca, M. Marsella, D. Andronico, and L. Lodato (2007), Lava flow mapping: The case of 2001 flank eruption of Etna, J. Geophys. Res., 112, F02029, doi:10.1029/2006JF000598. Corsaro, R. A., L. Miraglia, and M. Pompilio (2007), Petrologic evidence of a complex plumbing system feeding the July– August 2001 eruption of Mt. Etna, Sicily, Italy, Bull. Volcanol., 69, 401 – 421, doi:10.1007/ s00445-006-0083-4. Crisp, J., and S. Baloga (1990), A model for lava flows with two thermal componets, J. Geophys. Res., 95, 1255 – 1270, doi:10.1029/ JB095iB02p01255. Davies, A. G. (2003), Volcanism on Io: Estimation of eruption parameters from Galileo NIMS data, J. Geophys. Res., 108(E9), 5106, doi:10.1029/ 2001JE001509. Davies, A. G. (2007), Volcanism on Io: A Comparison With Earth, 372 pp., Cambridge Univ. Press, Cambridge, UK. Davies, A. G., L. P. Keszthelyi, D. Williams, C. B. Philips, A. S. McEwen, R. M. C. Lopes, W. D. Smythe, L. W. Kamp, L. A. Soderblom, and R. W. Carlson (2001), Thermal signature, eruption style and eruption evolution at Pele and Pillan on Io, J. Geophys. Res., 106(E12), 33,079– 33,104, doi:10.1029/2000JE001357. Dehn, J. K., G. Dean, and K. Engle (2000), Thermal monitoring of North Pacific volcanoes from space, Geology, 28(8), 755– 758, doi:10.1130/ 0091-7613(2000)28<755:TMONPV>2.0.CO;2. Dozier, J. (1981), A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sens. Environ., 11, 221– 229, doi:10.1016/0034-4257(81)90021-3. Flynn, L. P., and P. J. Mouginis-Mark (1994), Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii, Bull. Volcanol., 56, 297–301. Flynn, L. P., A. J. L. Harris, D. A. Rothery, and C. Oppenheimer (2000), High-Spatial resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data, in Remote Sensing of Active Volcanism, Geophys. Monogr. Ser., vol. 116, edited by P. J. Mouginis- Mark, J. A. Crisp, and J. H. Fink, pp. 161– 177, AGU, Washington, D. C. Flynn, L. P., A. J. L. Harris, and R. Wright (2001), Improved identification of volcanic features using Landsat 7 ETM+, Remote Sens. Environ., 78, 180–193, doi:10.1016/S0034-4257(01)00258-9. Glaze, L., P. W. Francis, and D. A. Rothery (1989), Measuring thermal budgets of active volcanoes by satellite remote sensing, Nature, 338, 144–146, doi:10.1038/338144a0. Harris, A. J. L., and S. K. Rowland (2001), FLOWGO: A kinematic thermo- rheological model for lava flowing in a channel, Bull. Volcanol., 63(1), 20– 44, doi:10.1007/s004450000120. Harris, A. J. L., and D. S. Stevenson (1997), Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data, J. Volcanol. Geotherm. Res., 76, 175 – 198, doi:10.1016/S0377-0273(96)00097-2. Harris, A. J. L., A. L. Butterworth, R. W. Carlton, I. Downey, P. Miller, P. Navarro, and D. A. Rothery (1997a), Low cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus, Bull. Volcanol., 59, 49– 64, doi:10.1007/s004450050174. Harris, A. J. L., L. P. Flynn, L. Keszthelyi, P. J. Mouginis-Mark, S. K. Rowland, and J. A. Resing (1998), Calculation of lava effusion rates from Landsat TM data, Bull. Vulcanol., 60, 52 – 71, doi:10.1007/ s004450050216. Harris, A. J. L., L. P. Flynn, D. A. Rothery, C. Oppenheimer, and S. B. Sherman (1999), Mass flux measurements at active lava lakes: Implications for magma recycling, J. Geophys. Res., 104(B4), 7117 – 7136, doi:10.1029/98JB02731. Harris, A. J. L., J. B. Murray, S. E. Aries, M. A. Davies, L. P. Flynn, M. J. Wooster, R. Wright, and D. A. Rothery (2000), Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms, J. Volcanol. Geotherm. Res., 102, 237 – 269, doi:10.1016/S0377-0273(00) 00190-6. Harris, A. J. L., E. Pilger, L. P. Flynn, H. Garbeil, P. J. Mouginis-Mark, J. Kauahikaua, and C. Thornber (2001), Automated, high temporal resolution, thermal analysis of Kilauea volcano, Hawaii, using GOES-9 satellite data, Int. J. Remote Sens., 22(6), 945 – 967, doi:10.1080/ 014311601300074487. Harris, A. J. L., L. P. Flynn, and W. I. Rose (2003), Temporal trends in Lava Dome Extrusion at Santiaguito 1922– 2000, Bull. Volcanol., 65, 77– 89. Harris, A. J. L., J. Bailey, S. Calvari, and J. Dehn (2005), Heat loss measured at a lava channel and its implications for down-channel cooling and rheology, Geol. Soc. Am. Spec. Pap., 396, 125– 146. Harris, A. J. L., J. Dehn, and S. Calvari (2007a), Lava effusion rate definition and measurement: A review, Bull. Volcanol., 70, 1 –22, doi:10.1007/ s00445-007-0120-y. Harris, A. J. L., M. Favalli, F. Mazzarini, and M. T. Pareschi (2007b), Bestfit results application of a thermo-rheological model for channelized lava flow to high-spatial resolution morphological data, Geophys. Res. Lett., 34, L01301, doi:10.1029/2006GL028126. Harris, J. L., S. Blake, D. A. Rothery, and N. F. Stevens (1997b), A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: Implications for real-time thermal volcano monitoring, J. Geophys. Res., 102, 7985 – 8003, doi:10.1029/ 96JB03388. Hon, K., J. Kauahikaua, and K. Mackay (1993), Inflation and cooling data from pahoehoe sheet flows on Kilauea Volcano, U.S. Geol. Surv. Open File Rep., 93–342A, 1 –16. Hon, K., J. Kauahikaua, R. Denlinger, and K. Mackay (1994), Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii, Geol. Soc. Am. Bull., 106, 351–370, doi:10.1130/0016-7606(1994)106<0351:EAIOPS> 2.3.CO;2. Keszthelyi, L., A. J. L. Harris, and J. Dehn (2003), Observations of the effect of wind on the cooling of active lava flows, Geophys. Res. Lett., 30(19), 1989, doi:10.1029/2003GL017994. Kilburn, C. R. J. (1990), Surfaces of ‘a‘a flow-fields on Mount Etna, Sicily: Morphology, rheology, crystallization and scaling phenomena, in Lava Flows and Domes: Emplacement Mechanisms and Hazard Implications, IAVCEI Proc. Volcanol., vol. 2, edited by J. H. Fink, pp. 129 – 156, Springer, Berlin. Kilburn, C. R. J., and J. E. Guest (1993), ‘a‘a lavas of Mount Etna, Sicily, in Active Lavas: Monitoring and Modeling, edited by C. R. J. Kilburn and G. Luongo, pp. 73– 106, Univ. College of London Press, London. Kneizys, F. X., E. P. Shettle, W. O. Gallery, J. H. Chetwynd Jr., L. W. Abreu, J. E. A. Selby, S. A. Clugh, and R. W. Fenn (1983), Atmospheric trasmittance/radiance: Computer code LOWTRAN 6, Environ. Res. Pap. 846, Air Force Geophys. Lab., Hanscom Air Force Base, Mass. Laver, C., I. de Pater, and F. Marchis (2007), Tvashtar awakening detected in April 2006 with OSIRIS at the W:m. Keck Observatory, Icarus, 191(2), 749– 754, doi:10.1016/j.icarus.2007.06.022. Lipman, P. W., and N. G. Banks (1987), Aa flow dynamics, Mauna Loa 1984, U.S. Geol. Surv. Prof. Pap., 1350, 1527– 1567. Lodato, L., L. Spampinato, A. J. L. Harris, S. Calvari, J. Dehn, and M. Patrick (2007), The morphology and evolution of the Stromboli 2002–03 lava flow field: An example of basaltic flow field emplaced on a steep slope, Bull. Volcanol., 69, 661– 679, doi:10.1007/s00445-006-0101-6. Lombardo, V., and M. F. Buongiorno (2006), Lava flow thermal analysis using three infrared bands of remote sensing imagery: A study case from Mt.Etna 2001 eruption, Remote Sens. Environ., 101(2), 141 – 149, doi:10.1016/j.rse.2005.12.008. Lombardo, V., M. F. Buongiorno, L. Merucci, and D. C. Pieri (2004), Differences in Landsat TM derived lava flow thermal structure during summit and flank eruption at Mount Etna, J. Volcanol. Geotherm. Res., 134(1– 2), 15– 34, doi:10.1016/j.jvolgeores.2003.12.006. Lombardo, V., M. F. Buongiorno, and S. Amici (2006), Characterization of volcanic thermal anomalies by means of sub-pixel temperature distribution analysis, Bull. Volcanol., 68, 641– 651, doi:10.1007/s00445-005- 0037-2. Lopes, R. M. C., et al. (2001), Io in near infrared: NIMS results from the Galileo flybys in 1999 and 2000, J. Geophys. Res., 106(E12), 33,053– 33,078, doi:10.1029/2000JE001463. Matson, M., and J. Dozier (1981), Identification of subresolution high temperature sources using a thermal IR sensor, Photogramm. Eng. Remote Sens., 47(9), 1311 – 1318. Naranjo, J. A., R. S. J. Sparks, M. V. Stasiuk, H. Moreno, and G. J. Ablay (1992), Morphological, structural and textural variations in the 1988– 1990 andesite lava of Lonquimay Volcano, Chile, Geol. Mag., 129(6), 657– 678. Oppenheimer, C. (1991), Lava flow cooling estimated from Landsat Thematic Mapper infrared data: The Lonquimay eruption (Chile, 1989), J. Geophys. Res., 96, 21,865– 21,878, doi:10.1029/91JB01902. Oppenheimer, C. (1993), Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data, Geophys. Res. Lett., 20(6), 431– 434, doi:10.1029/93GL00500. Oppenheimer, C., and P. W. Francis (1997), Remote sensing of heat, lava and fumarole emissions from Erta Ale lava lake, Ehtiopia, Int. J. Remote Sens., 18(8), 1661– 1692, doi:10.1080/014311697218043. Oppenheimer, C., P.W. Francis, D. A. Rothery, R.W. T. Carlton, and L. Glaze (1993a), Infrared image analysis of volcanic thermal features: La`scar Volcano, Chile, 1984 – 1992, J. Geophys. Res., 98, 4269 – 4286, doi:10.1029/92JB02134. Oppenheimer, C., D. A. Rothery, D. C. Pieri, M. J. Abrams, and V. Carrere (1993b), Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots, Int. J. Remote Sens., 14(16), 2919– 2934, doi:10.1080/01431169308904411. Oppenheimer, C., D. A. Rothery, and P. W. Francis (1993c), Thermal distribution at fumarole fields: Implications for infrared remote sensing of active volcanoes, J. Volcanol. Geotherm. Res., 55, 97–115, doi:10.1016/ 0377-0273(93)90092-6. Patrick, M. R., J. Dehn, and K. Dean (2004), Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis, J. Geophys. Res., 109, B03202, doi:10.1029/2003JB002537. Patrick, M., J. Dehn, and K. Dean (2005), Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption, II: Comparison with AVHRR thermal imagery, J. Geophys. Res., 110, B02210, doi:10.1029/ 2003JB002538. Pieri, D. C., and S. Baloga (1986), Eruption rate, area and length relationships for some Hawaiian lava flows, J. Volcanol. Geotherm. Res., 30, 29– 45, doi:10.1016/0377-0273(86)90066-1. Pieri, D. C., L. S. Glaze, and M. J. Abrams (1990), Thermal radiance observation of an active lava flow during the June 1984 eruption of Mt. Etna, Geology, 18, 1018– 1022, doi:10.1130/0091-7613(1990)018< 1018:TROOAA>2.3.CO;2. Pompilio, M., R. Trigila, and V. Zanon (1998), Melting experiments on Mt. Etna lavas: I - The calibration of an empirical geothermometer to estimate the eruptive temperature, Acta Vulcanol., 10(1), 67–75. Rothery, D. A., P. W. Francis, and C. A. Wood (1988), Volcano monitoring using short wavelength infrared data from satellite, J. Geophys. Res., 93, 7993– 8008, doi:10.1029/JB093iB07p07993. Sparks, R. S. J., H. Pinkerton, and G. Hulme (1976), Classification and formation of lava levees on Mt. Etna, Sicily, Geology, 4, 269 – 271, doi:10.1130/0091-7613(1976)4<269:CAFOLL>2.0.CO;2. Taddeucci, J., M. Pompilio, and P. Scarlato (2002), Monitoring the explosive activity of the July August 2001 eruption of Mt. Etna (Italy) by ash characterization, Geophys. Res. Lett., 29(8), 1230, doi:10.1029/ 2001GL014372. Wadge, G. (1977), The storage and release of magma on Mount Etna, J. Volcanol. Geotherm. Res., 2, 361 – 384, doi:10.1016/0377-0273(77) 90021-X. Walker, G. P. L. (1973), Lengths of lava flows, Philos. Trans. R. Soc. London, Ser. A, 274, 107– 118, doi:10.1098/rsta.1973.0030. Wan, Z., and J. Dozier (1989), Land-surface temperature measurement from space: Physical principles and inverse modelling, IEEE Trans. Geosci. Remote Sens., 27(3), 268–277, doi:10.1109/36.17668. Wiesnet, D. R., and J. D’Aguanno (1982), Thermal imagery of Mount Erebus from the NOAA-6 satellite, Antarct. J. US., 17, 32– 34. Wooster, M. J., T. Kaneko, S. Nakada, and H. Shimizu (2000), Discimination of lava dome activity styles using satellite-derived thermal structures, J. Volcanol. Geotherm. Res., 102, 97 – 118, doi:10.1016/S0377- 0273(00)00183-9. Wright, R., P. F. Flynn, and A. J. L. Harris (2001a), Evolution of lava flowfields at Mount Etna, 27 – 28 October 1999, observed by Landsat 7 ETM+, Bull. Volcanol., 63, 1 – 7, doi:10.1007/s004450100124. Wright, R., S. Blake, A. Harris, and D. Rothery (2001b), A simple explanation for the space-based calculation of lava eruptions rates, Earth Planet. Sci. Lett., 192, 223– 233, doi:10.1016/S0012-821X(01)00443-5.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLombardo, V.en
dc.contributor.authorHarris, A. J. L.en
dc.contributor.authorCalvari, S.en
dc.contributor.authorBuongiorno, M. F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversity of Hawaiien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-3231-9636-
crisitem.author.orcid0000-0001-8189-5499-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lombardo et al 2009.pdfMain article886.2 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s)

166
checked on Apr 17, 2024

Download(s)

20
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric