Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5176
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-09-16T12:45:18Zen
dc.date.available2009-09-16T12:45:18Zen
dc.date.issued2009-08-08en
dc.identifier.urihttp://hdl.handle.net/2122/5176en
dc.description.abstractThis paper discusses the development and engineering of electrical spectroscopy for simultaneous and non invasive measurement of electrical resistivity and dielectric permittivity. A quadrupolar probe is able to perform measurements on a subsurface with inaccuracies below a fixed limit in a band of low frequencies. The probe should be connected to an appropriate analogical digital converter (ADC) which samples in uniform or in phase and quadrature (IQ) mode. If the probe is characterized by a galvanic contact with the surface, the inaccuracies in the measurement of resistivity and permittivity, due to the uniform or IQ sampling ADC, are analytically expressed. A large number of numerical simulations prove that the performance of the probe depends on the selected sampler and that the IQ is better compared to the uniform mode under the same operating conditions, i.e. bit resolution and medium.en
dc.language.isoEnglishen
dc.relation.ispartofArXiven
dc.relation.ispartofseriesarXiv:0908.0648v2 (2009)en
dc.relation.isversionofhttp://lanl.arxiv.org/abs/0908.0648en
dc.subjectExplorative geophysicsen
dc.subjectMethods of non-destructive testingen
dc.subjectData acquisitionen
dc.subjectComplex impedance measurements: error theoryen
dc.titleOptimal Requirements of a Data Acquisition System for a Quadrupolar PROBE employed in Electrical Spectroscopyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlUnreferreden
dc.description.pagenumber1-42en
dc.identifier.URLxxx.lanl.goven
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.relation.referencesARPAIA P., DAPONTE P. and MICHAELI L. (1999): Influence of the architecture on ADC error modelling, IEEE T. Instrum. Meas, 48, 956-966. ARPAIA P., DAPONTE P. and RAPUANO S. (2003): A state of the art on ADC modelling, Comput. Stand. Int., 26, 31–42. AUTY R.P., COLE R.H. (1952): Dielectric properties of ice and solid, J. Chem. Phys., 20, 1309-1314. BACCIGALUPI A., CENNAMO F. and D’APUZZO M. (1989): Digital recording of high speed voltage transients in Proceedings of 3rd IMEKO TC4 International Symposium on Measurement and Electronic Power Systems (Zurich, Germany). BJÖRSELL N. and HÄNDEL P. (2008): Achievable ADC performance by postcorrection utilizing dynamic modeling of the integral nonlinearity, EURASIP J. Adv. Sig. Pr., 2008, ID 497187 (10 pp). BORSCHE M. V., SHONKENS J. and RENNEBOOG J. (1986): Dynamic testing and diagnostic of A/D converters, IEEE Trans. C. A. S., 33, 775-778. CHELIDZE T.L., GUEGUEN Y., (1999): Electrical spectroscopy of porous rocks: a review-I, Theoretical models, Geophys. J. Int., 137, 1-15. CHELIDZE T.L., GUEGUEN Y., RUFFET C. (1999): Electrical spectroscopy of porous rocks: a review-II, Experimental results and interpretation, Geophys. J. Int., 137, 16-34. DEBYE P. (1929): Polar Molecules (Leipzig Press, Germany). DECLERK P. (1995): Bibliographic study of georadar principles, applications, advantages, and inconvenience, NDT & E International, 28, 390-442 (in French, English abstract). DEL VENTO D. and VANNARONI G. (2005): Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil, Rev. Sci. Instrum., 76, 084504 (1-8). EDWARDS R. J. (1998): Typical Soil Characteristics of Various Terrains, http://www.smeter.net/grounds/soil-electrical-resistance.php. GRARD R. (1990): A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration, Meas. Sci. Technol., 1, 295-301. GRARD R. (1990): A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration, Meas. Sci. Technol., 1, 801-806. GRARD R. and TABBAGH A. (1991): A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth, J. Geophys. Res., 96, 4117-4123. IRONS F. H., HUMMELS D. M. and KENNEDY S. P. (1991): Improved Compensation for analog-to-digital converters, IEEE T. Circuits-I, 38, 958-961. JANKOVIC D. and ÖHMAN J. (2001): Extraction of in-phase and quadrature components by IF-sampling, Department of Signals and Systems, Cahlmers University of Technology, Goteborg (carried out at Ericson Microwave System AB). KUFFEL J., MALEWSKY R. and VAN HEESWIJK R. G. (1991): Modelling of the dynamic performance of transient recorders used for high voltage impulse tests, IEEE T. Power Deliver., 6, 507-515. LAURENTS S., BALAYSSAC J. P., RHAZI J., KLYSZ G. and ARLIGUIE G. (2005): Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling, Materials and Structures (M&S), 38, 827-832 (2005). MOJID M. A., WYSEURE G. C. L. and ROSE D. A. (2003): Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering, Geotechnical and Geological Engineering, 21, 243-258. MOJID M. A. and CHO H. (2004): Evaluation of the time-domain reflectometry (TDR)-measured composite dielectric constant of root-mixed soils for estimating soil-water content and root density, J. Hydrol., 295, 263–275. MUGINOV G. D. and VENETSANOPOULOS A. N. (1997): A new approach for estimating high-speed analog-to-digital converter error, T. Instrum. Meas, 46, 980-985. MURRAY-SMITH D. J. (1987): Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems, in Complex and distributed systems: analysis, simulation and control, edited by TZAFESTAS S. G. and BORNE P. (North-Holland, Amsterdam), pp. 323–328. POLDER R., ANDRADE C., ELSENER B., VENNESLAND Ø., GULIKERS J., WEIDERT R. and RAUPACH M. (2000): Test methods for on site measurements of resistivity of concretes, Materials and Structures (M&S), 33, 603-611. POLGE R. J., BHAGAVAN B. K. and CALLAS L. (1975): Evaluating analog-to-digital converters, Simulation, 24, 81-86. RAZAVI B. ( 1995): Principles of Data Conversion System Design (IEEE Press). SAMOUËLIAN A., COUSIN I., TABBAGH A., BRUAND A. and RICHARD G. (2005): Electrical resistivity survey in soil science: a review, Soil Till,. Res. 83 172-193. SBARTAÏ Z. M., LAURENS S., BALAYSSAC J. P., ARLIGUIE G. and BALLIVY G. (2006): Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures, NDT & E International, 39, 400-407. SETTIMI A., ZIRIZZOTTI A., BASKARADAS J. A. and BIANCHI C. (2009): Inaccuracy assessment for simultaneous measurements of resistivity and permittivity applying a sensitivity functions approach, arXiv: 0908.0641. TABBAGH A., HESSE A. and GRARD R. (1993): Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophys. Prospect., 41, 579-597. VANNARONI G. , PETTINELLI E., OTTONELLO C., CERETI A., DELLA MONICA G., DEL VENTO D., DI LELLIS A. M., DI MAIO R., FILIPPINI R., GALLI A., MENGHINI A., OROSEI R., ORSINI S., PAGNAN S., PAOLUCCI F., PISANI A. R., SCHETTINI G., STORINI M. and TACCONI G. (2004): MUSES: multi-sensor soil electromagnetic sounding, Planet. Space Sci., 52, 67–78. ZHANG J. Q. and OVASKA S. J. (1998): ADC characterization by an eigenvalues method in Instrumentation and Measurement Technology Conference (IEEE), 2, 1198-1202.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.en
dc.contributor.authorZirizzotti, A.en
dc.contributor.authorBaskaradas, J. A.en
dc.contributor.authorBianchi, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.author.orcid0000-0001-7586-9219-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
0908.0648.pdf1.53 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

396
checked on Apr 17, 2024

Download(s) 50

165
checked on Apr 17, 2024

Google ScholarTM

Check