Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5173
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallZirizzotti, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBaskaradas, J. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-09-16T12:35:02Zen
dc.date.available2009-09-16T12:35:02Zen
dc.date.issued2009-08-08en
dc.identifier.urihttp://hdl.handle.net/2122/5173en
dc.description.abstractIn this paper, we propose a discussion concerning the design and implementation of an induction probe for electrical SPECTROscopy which performs simultaneous and not invasive measurements on the electrical RESistivity ρ and dielectric PERmittivity εr of the terrestrial ground and concretes (SPECTRORESPER probe). In order to design a SPECTRORESPER which measures ρ and εr with inaccuracies below a prefixed limit (10%) in a band of low frequencies (B=100kHz), the probe should be connected to an appropriate analogical digital converter (ADC), which samples in uniform or in phase and quadrature (IQ) mode, otherwise to a lock-in amplifier. We develop a large number of numerical simulations, applying the Mathcad program, which provide the optimization of the height above ground, the electrode-electrode distance and working frequencies minimizing the inaccuracies of the SPECTRORESPER, in galvanic or capacitive contact with terrestrial soils or concretes, of low or high resistivity. As final findings, we underline that the performances of a lock-in amplifier are even better compared to an IQ ADC with high resolution bit, under the same operating conditions. As consequences in the practical applications: if the probe is connected to a system of data acquisition as an uniform or rather an IQ sampler, then it could be commercialized for companies of building and road paving, being employable for analyzing “in situ” only concretes; otherwise, if the data acquisition system is a lock-in amplifier, the marketing would be for companies of geophysical prospecting, involved to analyze “in situ” even terrestrial soils.en
dc.language.isoEnglishen
dc.relation.ispartofArXiven
dc.relation.ispartofseriesarXiv:0908.0651v2 (2009)en
dc.relation.isversionofhttp://lanl.arxiv.org/abs/0908.0651en
dc.subjectExplorative geophysicsen
dc.subjectMethods of non-destructive testingen
dc.subjectData acquisitionen
dc.subjectComplex impedance measurements: error theoryen
dc.titleDesign and Implementation of an Induction Probe for Simultaneous Measurements of Permittivity and Resistivityen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlUnreferreden
dc.description.pagenumber1-46en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.relation.referencesAUTY R.P., COLE R.H. (1952): Dielectric properties of ice and solid, J. Chem. Phys., 20, 1309-1314. CHELIDZE T.L., GUEGUEN Y., (1999): Electrical spectroscopy of porous rocks: a review-I, Theoretical models, Geophys. J. Int., 137, 1-15. CHELIDZE T.L., GUEGUEN Y., RUFFET C. (1999): Electrical spectroscopy of porous rocks: a review-II, Experimental results and interpretation, Geophys. J. Int., 137, 16-34. DEBYE P. (1929): Polar Molecules (Leipzig Press, Germany). DECLERK P. (1995): Bibliographic study of georadar principles, applications, advantages, and inconvenience, NDT & E International, 28, 390-442 (in French, English abstract). DEL VENTO D. and VANNARONI G. (2005): Evaluation of a mutual impedance probe to search for water ice in the Martian shallow subsoil, Rev. Sci. Instrum., 76, 084504 (1-8). EDWARDS R. J. (1998): Typical Soil Characteristics of Various Terrains, http://www.smeter.net/grounds/soil-electrical-resistance.php. GRARD R. (1990): A quadrupolar array for measuring the complex permittivity of the ground: application to earth prospection and planetary exploration, Meas. Sci. Technol., 1, 295-301. GRARD R. (1990): A quadrupole system for measuring in situ the complex permittvity of materials: application to penetrators and landers for planetary exploration, Meas. Sci. Technol., 1, 801-806. GRARD R. and TABBAGH A. (1991): A mobile four electrode array and its application to the electrical survey of planetary grounds at shallow depth, J. Geophys. Res., 96, 4117-4123. JANKOVIC D. and ÖHMAN J. (2001): Extraction of in-phase and quadrature components by IF-sampling, Department of Signals and Systems, Cahlmers University of Technology, Goteborg (carried out at Ericson Microwave System AB). KIRKWOOD J.G. (1939): The dielectric polarization of polar liquids, J. Chem. Phys., 7, 911−919. LAURENTS S., BALAYSSAC J. P., RHAZI J., KLYSZ G. and ARLIGUIE G. (2005): Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling, Materials and Structures (M&S), 38, 827-832 (2005). MOJID M. A., WYSEURE G. C. L. and ROSE D. A. (2003): Electrical conductivity problems associated with time-domain reflectometry (TDR) measurement in geotechnical engineering, Geotechnical and Geological Engineering, 21, 243-258. MOJID M. A. and CHO H. (2004): Evaluation of the time-domain reflectometry (TDR)-measured composite dielectric constant of root-mixed soils for estimating soil-water content and root density, J. Hydrol., 295, 263–275. MURRAY-SMITH D. J. (1987): Investigations of methods for the direct assessment of parameter sensitivity in linear closed-loop control systems, in Complex and distributed systems: analysis, simulation and control, edited by TZAFESTAS S. G. and BORNE P. (North-Holland, Amsterdam), pp. 323–328. POLDER R., ANDRADE C., ELSENER B., VENNESLAND Ø., GULIKERS J., WEIDERT R. and RAUPACH M. (2000): Test methods for on site measurements of resistivity of concretes, Materials and Structures (M&S), 33, 603-611. RAZAVI B. (1995): Principles of Data Conversion System Design (IEEE Press). SAMOUËLIAN A., COUSIN I., TABBAGH A-, BRUAND A. and RICHARD G. (2005): Electrical resistivity survey in soil science: a review, Soil Till,. Res. 83 172-193. SBARTAÏ Z. M., LAURENS S., BALAYSSAC J. P., ARLIGUIE G. and BALLIVY G. (2006): Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures, NDT & E International, 39, 400-407. SCOFIELD J. H. (1994): A Frequency-Domain Description of a Lock-in Amplifier, American Journal of Physics (AJP), 62, 129-133. SETTIMI A., ZIRIZZOTTI A., BASKARADAS J. A. and BIANCHI C. (2009): Inaccuracy assessment for simultaneous measurements of resistivity and permittivity applying a sensitivity functions approach, arXiv: 0908.0641. SETTIMI A., ZIRIZZOTTI A., BASKARADAS J. A. and BIANCHI C. (2009): Optimal requirements of a data acquisition system for a quadrupolar probe employed in electrical spectroscopy, arXiv: 0908.0648. TABBAGH A., HESSE A. and GRARD R. (1993): Determination of electrical properties of the ground at shallow depth with an electrostatic quadrupole: field trials on archaeological sites, Geophys. Prospect., 41, 579-597. VANNARONI G. , PETTINELLI E., OTTONELLO C., CERETI A., DELLA MONICA G., DEL VENTO D., DI LELLIS A. M., DI MAIO R., FILIPPINI R., GALLI A., MENGHINI A., OROSEI R., ORSINI S., PAGNAN S., PAOLUCCI F., PISANI A. R., SCHETTINI G., STORINI M. and TACCONI G. (2004): MUSES: multi-sensor soil electromagnetic sounding, Planet. Space Sci., 52, 67–78. WALKER J. P. and HOUSER P. R. (2002): Evaluation of the OhmMapper instrument for soil moisture measurement, Soil Science Society of America Journal, 66, 728-734 (http://www.geometrics.com/geometrics-products/geometrics-electro-magnetic-products/ohm- mapper/).en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorSettimi, A.en
dc.contributor.authorZirizzotti, A.en
dc.contributor.authorBaskaradas, J. A.en
dc.contributor.authorBianchi, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSAP, School of Electrical and Electronics Engineering-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.author.orcid0000-0001-7586-9219-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
0908.0651.pdf1.53 MBAdobe PDFView/Open
Show simple item record

Page view(s) 20

536
checked on Sep 11, 2024

Download(s) 50

214
checked on Sep 11, 2024

Google ScholarTM

Check