Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5168
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallTaddeucci, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallWinkler, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2009-09-08T08:14:34Zen
dc.date.available2009-09-08T08:14:34Zen
dc.date.issued2009-08-27en
dc.identifier.urihttp://hdl.handle.net/2122/5168en
dc.description.abstractThe magnetic properties of tree leaves may be used to delineate the abundance and dispersal of anthropogenic airborne particulate matter (PM) in urban environments. In the city of Rome, Italy, circulating vehicles are the main source of magnetic PM, already characterized as prevalently lowcoercivity, magnetite-like particles. To further constrain the nature and origin of such magnetic particles, we carried out coupled field emission scanning electron microscopy and a variety of rock magnetic analyses on PM specimens from Quercus ilex leaves and from potential PM sources in circulating motor vehicles in Rome. Fe-rich particles are mostly 0.1–5 µm in size, with irregular shapes and moss-like surface. Particles from disk brakes and diesel and gasoline exhaust pipes show distinct compositional and magnetic hysteresis signatures, suggesting that the magnetic PM collected on tree leaves consists of a mixture of particle populations deriving mostly from the abrasion of disk brakes and, to a lesser extent, from fuel combustion residuals emitted by diesel and gasoline exhausts. The contribution of fine superparamagnetic particles to the overall magnetic assemblage has been evaluated with specific rock magnetic analyses. The combined magnetic and microtextural-compositional analyses provide an effective and original tool to characterize urban PM air pollution.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries8/10 (2009)en
dc.subjectenvironmental magnetismen
dc.subjectparticulate matteren
dc.subjectpollutionen
dc.titleCompositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ08Z06en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.03. Pollutionen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1029/2009GC002563en
dc.relation.referencesDay, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites. Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. Dearing, J. A., R. J. L. Dann, K. Hay, J. A. Lees, P. J. Loveland, B. A. Maher, and K. O’Grady (1996), Frequency-dependent susceptibility measurements of environmental materials, Geophys. J. Int., 124, 228 – 240, doi:10.1111/j.1365-246X. 1996.tb06366.x. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Eick, P. M., and C. M. Schlinger (1990), The use of magnetic susceptibility and its frequency dependence for delineation of a magnetic stratigraphy in ash-flow tuffs, Geophys. Res. Lett., 17, 783–786, doi:10.1029/GL017i006p00783. Eyre, J. K. (1997), Frequency dependence of magnetic susceptibility for populations of single-domain grains, Geophys. J. Int., 129, 209 – 211, doi:10.1111/j.1365-246X.1997. tb00951.x. Garg, B., S. H. Cadle, P. A. Mulawa, P. J. Groblicki, C. Laroo, and G. A. Parr (2000), Brake wear particulate matter emissions, Environ. Sci. Technol., 34, 4463–4469, doi:10.1021/ es001108h. Gautam, P., U. Blaha, E. Appel, and G. Neupane (2004), Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal, Phys. Chem. Earth, 29, 973–984. Harrison, R. J., and J. M. Feinberg (2008), FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing, Geochem. Geophys. Geosyst., 9, Q05016, doi:10.1029/ 2008GC001987. Hildemann, L. M., G. R. Markowski, M. C. Jones, and G. R. Cass (1991), Submicrometer aerosol mass distributions of emissions from boilers, fireplaces, automobiles, diesel trucks, and meat-cooking operations, Aerosol Sci. Technol., 14(1), 138–152, doi:10.1080/02786829108959478. Hoffmann, V., M. Knab, and E. Appel (1999), Magnetic susceptibility mapping of roadside pollution, J. Geochem. Explor., 66, 313–326, doi:10.1016/S0375-6742(99)00014-X. Jordanova, D., V. Hoffmann, and K. T. Fehr (2004), Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian parts), Earth Planet. Sci. Lett., 221, 71 – 89, doi:10.1016/S0012-821X (04)00074-3. Jordanova, D., N. Jordanova, and V. Hoffmann (2006), Magnetic mineralogy and grain-size dependence of hysteresis parameters of single spherules from industrial waste products, Phys. Earth Planet. Inter., 154, 255 – 265, doi:10.1016/j.pepi.2005.06.015. Lu, S. G., Y. W. Zheng, and S. Q. Bai (2008), A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves, Atmos. Environ., 42, 6431 – 6441, doi:10.1016/j.atmosenv.2008.04.039. Maher, B. A., C. Moore, and J. Matzka (2008), Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves, Atmos. Environ., 42, 364 – 373, doi:10.1016/j.atmosenv.2007. 09.013. Maricq, M. M., D. H. Podsialik, and R. E. Chase (1999), Examination of the size-resolved and transient nature of motor vehicle particle emissions, Environ. Sci. Technol., 33, 1618–1626, doi:10.1021/es9808806. Matzka, J., and B. A. Maher (1999), Magnetic biomonitoring of roadside tree leaves: Identification of spatial and temporal variations in vehicle-derived particles, Atmos. Environ., 33, 4565–4569, doi:10.1016/S1352–2310(99)00229-0. Mitchell, R., and B. A. Maher (2009), Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution, Atmos. Environ., 43, 2095–2103, doi:10.1016/ j.atmosenv.2009.01.042. Moreno, E., L. Sagnotti, A. Winkler, J. Dinare`s-Turell, and A. Cascella (2003), Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves, Atmos. Environ., 37, 2967–2977, doi:10.1016/S1352-2310(03)00244-9. Muxworthy, A. R., E. Schmidbauer, and N. Petersen (2002), Magnetic properties and Mo¨ssbauer spectra of urban atmospheric particulate matter: A case study from Munich, Germany, Geophys. J. Int., 150, 558–570. Muxworthy, A. R., J. Matzka, A. F. Davila, and N. Petersen (2003), Magnetic signature of daily sampled urban atmospheric particles, Atmos. Environ., 37, 4163 – 4169, doi:10.1016/S1352-2310(03)00500-4. O¨ zdemir, O¨ ., D. J. Dunlop, and B. M. Moskowitz (1993), The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671 – 1674, doi:10.1029/ 93GL01483. Petrovsky, E., and A. Kapicka (2006), On determination of the Curie point from thermomagnetic curves, J. Geophys. Res., 111, B12S27, doi:10.1029/2006JB004507. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660– 6667, doi:10.1063/1.370176. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), Firstorder reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/2000JB900326. Rowan, C. J., and A. P. Roberts (2006), Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett., 241, 119 –137, doi:10.1016/ j.epsl.2005.10.017. Sagnotti, L., P. Macrı`, R. Egli, and M. Mondino (2006), Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources, J. Geophys. Res., 111, B12S22, doi:10.1029/2006JB004508. Sanders, P., N. Xu, T. Dalka, and M. M. Maricq (2003), Airborne brake wear debris: Size distributions, composition, and a comparison of dynamometer and vehicle test, Environ. Sci. Technol., 37, 4060–4069, doi:10.1021/es034145s. Sarbak, Z., A. Stanczyk, and M. Kramer-Wachowiak (2004), Characterization of surface properties of various fly ashes, Powder Technol., 145, 82 – 87, doi:10.1016/j.powtec. 2004.04.041. Shah, S. D., D. R. Cocker, III, J. W. Miller, and J. M. Norbeck (2004), Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines, Environ. Sci. Technol., 38, 2544–2550, doi:10.1021/es0350583. Smirnov, A. V., and J. A. Tarduno (2001), Estimating superparamagnetism in marine sediments with the time dependency of coercivity of remanence, J. Geophys. Res., 106, 16,135–16,143, doi:10.1029/2001JB000152. Szo¨nyi, M., L. Sagnotti, and A. M. Hirt (2007), On leaf magnetic homogeneity in particulate matter biomonitoring studies, Geophys. Res. Lett., 34, L06306, doi:10.1029/ 2006GL029076. Szo¨nyi, M., L. Sagnotti, and A. M. Hirt (2008), A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus ilex tree leaves, Geophys. J. Int., 173, 127–141, doi:10.1111/j.1365- 246X.2008.03715.x. Tarduno, J. A. (1995), Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion?, Geophys. Res. Lett., 22, 1337 – 1340, doi:10.1029/ 95GL00888. Urbat, M., E. Lehndorff, and L. Schwark (2004), Biomonitoring of air quality in Cologne conurbation using pine needles as a passive sampler—Part I: Magnetic properties, Atmos. Environ., 38, 3781 – 3792, doi:10.1016/j.atmosenv. 2004.03.061. Veneva, L., V. Hoffmann, D. Jordanova, N. Jordanova, and T. Fehr (2004), Rock magnetic, mineralogical and microstructural characterization of fly ashes from Bulgarian power plants and the nearby anthropogenic soils, Phys. Chem. Earth, 29, 1011–1023. Walker, A. P. (2004), Controlling particulate emissions from diesel vehicles, Top. Catal., 28(1 – 4), 165 – 170, doi:10.1023/B:TOCA.0000024346.29600.0e. Wang, Y. F., K. L. Huang, C. T. Li, H. H. Mi, J. H. Luo, and P. J. Tsai (2003), Emissions of fuel metals content from a diesel vehicle engine, Atmos. Environ., 37, 4637–4643, doi:10.1016/j.atmosenv.2003.07.007. Worm, H.-U. (1998), On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility, Geophys. J. Int., 133, 201 – 206, doi:10.1046/j.1365-246X.1998.1331468.x.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorTaddeucci, J.en
dc.contributor.authorWinkler, A.en
dc.contributor.authorCavallo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-0516-3699-
crisitem.author.orcid0000-0002-0653-0059-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009GC002563-Sagnotti.pdfmain article1.4 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

65
checked on Feb 10, 2021

Page view(s) 5

734
checked on Apr 17, 2024

Download(s)

42
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric