Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5133
Authors: Bizzarri, A. 
Title: What does control earthquake ruptures and dynamic faulting? A review of different competing mechanisms
Journal: Pure and Applied Geophysics 
Series/Report no.: 5-7/166(2009)
Publisher: Birkhauser Verlag
Issue Date: Jun-2009
DOI: 10.1007/s00024-009-0494-1
URL: http://www.bo.ingv.it/~bizzarri/
Keywords: Rheology and friction of the fault zones
Constitutive laws
Mechanics of faulting
Earthquake dynamics
Subject Classification04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics 
Abstract: The fault weakening occurring during an earthquake and the temporal evolution of the traction on a seismogenic fault depend on several physical mechanisms, potentially concurrent and interacting. Recent laboratory experiments and geological field observations of natural faults revealed the presence, and sometime the coexistence, of thermally activated processes (such as thermal pressurization of pore fluids, melting of gouge and rocks, material property changes, thermally-induced chemical environment evolution), elasto-dynamic lubrication, porosity and permeability evolution, gouge fragmentation and wear, etc. In this paper, by reviewing in a unifying sketch all possible chemico–physical mechanisms that can affect the traction evolution, we suggest how they can be incorporated in a realistic fault governing equation. We will also show that simplified theoretical models that idealistically neglect these phenomena appear to be inadequate to describe as realistically as possible the details of breakdown process (i.e., the stress release) and the consequent high frequency seismic wave radiation. Quantitative estimates show that in most cases the incorporation of such nonlinear phenomena has significant, often dramatic, effects on the fault weakening and on the dynamic rupture propagation. The range of variability of the value of some parameters, the uncertainties in the relative weight of the various competing mechanisms, and the difference in their characteristic length and time scales sometime indicate that the formulation of a realistic governing law still requires joint efforts from theoretical models, laboratory experiments and field observations.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat Existing users please Login
Bizzarri_2009b.pdf1.1 MBAdobe PDF
Show full item record

WEB OF SCIENCETM
Citations 50

34
checked on Feb 10, 2021

Page view(s)

110
checked on Apr 17, 2024

Download(s)

23
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric