Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5132
DC FieldValueLanguage
dc.contributor.authorallBurston, R.; Department of Electronic and Electrical Engineering; Department of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.authorallAstin, I.; Department of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.authorallMitchell, C.; Department of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.authorallAlfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPedersen, T.; Space Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USAen
dc.contributor.authorallSkone, S.; Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canadaen
dc.date.accessioned2009-07-23T10:18:32Zen
dc.date.available2009-07-23T10:18:32Zen
dc.date.issued2009-07-21en
dc.identifier.urihttp://hdl.handle.net/2122/5132en
dc.description.abstractA model is developed of the gradient drift instability growth rate in the north polar cap ionosphere, utilizing a novel approach employing an ionospheric imaging algorithm. The growth rate values calculated by this model are in turn used to estimate how the amplitudes of actual gradient drift waves vary over time as the plasma drifts and the growth rates change with time. Ionospheric imaging is again used in order to determine plasma drift velocities. The final output from the model is in turn used to assess the linear correlation between the scintillation indices S4 and σØ recorded by several GPS L1 band scintillation receivers stationed in the north polar cap and mean gradient drift wave amplitudes. Four separate magnetic storm periods, totaling 13 days, are analyzed in this way. The results show weak but significant linear correlations between the mean wave amplitudes calculated and the observed scintillation indices at F layer altitudes.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 114 (2009)en
dc.subjectscintillationsen
dc.subjectpolar ionosphereen
dc.subjectgradient driften
dc.subjectinstabilityen
dc.titleCorrelation between scintillation indices and gradient drift wave amplitudes in the northern polar ionosphereen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberA07309en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physicsen
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillationsen
dc.subject.INGV03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniquesen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interactionen
dc.subject.INGV05. General::05.07. Space and Planetary sciences::05.07.02. Space weatheren
dc.identifier.doi10.1029/2009JA014151en
dc.relation.referencesBeach, T. L. (2006), Perils of the GPS phase scintillation index (sf), Radio Sci., 41, RS5S31, doi:10.1029/2005RS003356. Bust, G. S., and C. N. Mitchell (2008), History, current state, and future directions of ionospheric imaging, Rev. Geophys., 46, RG1003, doi:10.1029/2006RG000212. Cerisier, J. C., J. J. Berthelier, and C. Beghin (1985), Unstable density gradients in the high-latitude ionosphere, Radio Sci., 20(4), 755– 761. Chaturvedi, P. K., M. J. Keskinen, S. L. Ossakow, and J. A. Fedder (1994), Effects of field line mapping on the gradient-drift instability in the coupled E and F region high-latitude ionosphere, Radio Sci., 29(1), 317– 335, doi:10.1029/93RS02124. Eriksson, S., L. G. Blomberg, and D. R. Weimer (2002), Comparing a spherical harmonic model of the global electric field distribution with Astrid-2 observations, J. Geophys. Res., 107(A11), 1391, doi:10.1029/ 2002JA009313. Gondarenko, N. A., and P. N. Guzdar (1999), Gradient drift instability in high latitude plasma patches: Ion inertial effects, Geophys. Res. Lett., 26(22), 3345–3348, doi:10.1029/1999GL003647. Gondarenko, N. A., and P. N. Guzdar (2001), Three-dimensional structuring characteristics of high-latitude plasma patches, J. Geophys. Res., 106(A11), 24,611 – 24,620, doi:10.1029/2000JA000440. Gondarenko, N. A., and P. N. Guzdar (2004), Density and electric field fluctuations associated with the gradient drift instability in the high-latitude ionosphere, Geophys. Res. Lett . , 31, L11802, doi :10.1029/ 2004GL019703. Guzdar, P. N., P. K. Chaturvedi, K. Papadopoulos, and S. L. Ossakow (1998), The thermal self-focusing instability near the critical surface in the high-latitude ionosphere, J. Geophys. Res., 103(A2), 2231 – 2237, doi:10.1029/97JA03247. Hargreaves, J. K. (1992), The Solar-Terrestrial Environment, Cambridge Univ. Press, Cambridge. U. K. Kaplan, E. D. (1996), Understanding GPS: Principles and Applications, Artech House, Boston, Mass. Kelley, M. C. (1989), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Academic, San Diego, Calif. Keskinen, M. J., and S. L. Ossakow (1983), Theories of high-latitude ionospheric irregularities: A review, Radio Sci., 18(6), 1077–1091. Kivanc¸, O¨ ., and R. A. Heelis (1997), Structures in ionospheric number density and velocity associated with polar cap ionization patches, J. Geophys. Res., 102(A1), 307– 318, doi:10.1029/96JA03141. Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aiken (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/ 2002JA009430. Sojka, J. J., M. V. Subramanium, L. Zhu, and R. W. Schunk (1998), Gradient drift instability growth rates from global-scale modeling of the polar ionosphere, Radio Sci., 33(6), 1915–1928, doi:10.1029/98RS02490. Sojka, J. J., L. Zhu, M. David, and R. W. Schunk (2000), Modeling the evolution of meso-scale ionospheric irregularities at high latitudes, Geophys. Res. Lett., 27(21), 3595– 3598, doi:10.1029/2000GL003813. Spencer, P. S. J., and C. N. Mitchell (2007), Imaging of fast moving electron- density structures in the polar cap, Ann. Geophys., 50(3), 427–434. Weimer, D. R. (1995), Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients, J. Geophys. Res., 100(A10), 19,595– 19,607, doi:10.1029/95JA01755. Weimer, D. R. (1996), A flexible, IMF dependent model of high-latitude electric potentials having ‘‘space weather’’ applications, Geophys. Res. Lett., 23(18), 2549– 2552, doi:10.1029/96GL02255. Weimer, D. R. (2001a), An improved model of ionospheric electric potentials including substorm perturbations and application to the Geospace Environment Modeling November 24, 1996, event, J. Geophys. Res., 106(A1), 407– 416, doi:10.1029/2000JA000604. Weimer, D. R. (2001b), Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data, J. Geophys. Res., 106(A7), 12,889–12,902, doi:10.1029/ 2000JA000295. Weimer, D. R. (2005a), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884. Weimer, D. R. (2005b), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270. Winglee, R. M., V. O. Papitashvili, and D. R. Weimar (1997), Comparison of the high-latitude ionospheric electrodynamics inferred from global simulations and semiempirical models for the January 1992 GEM campaign, J. Geophys. Res., 102(A12), 26,961 – 26,977, doi:10.1029/ 97JA02461.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBurston, R.en
dc.contributor.authorAstin, I.en
dc.contributor.authorMitchell, C.en
dc.contributor.authorAlfonsi, Lu.en
dc.contributor.authorPedersen, T.en
dc.contributor.authorSkone, S.en
dc.contributor.departmentDepartment of Electronic and Electrical Engineering; Department of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.departmentDepartment of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.departmentDepartment of Electronic and Electrical Engineering, University of Bath, Bath, UK.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentSpace Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USAen
dc.contributor.departmentDepartment of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canadaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Bath, UK-
crisitem.author.deptUniversity of Bath, UK-
crisitem.author.dept3Department of Electronic and Electrical Engineering, University of Bath-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptSpace Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, USA-
crisitem.author.deptDepartment of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada-
crisitem.author.orcid0000-0003-4989-9187-
crisitem.author.orcid0000-0002-1806-9327-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009JA014151.pdfmain article632.95 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

13
checked on Feb 10, 2021

Page view(s) 10

402
checked on Apr 20, 2024

Download(s)

37
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric