Please use this identifier to cite or link to this item:
Authors: Burston, R.* 
Astin, I.* 
Mitchell, C.* 
Alfonsi, Lu.* 
Pedersen, T.* 
Skone, S.* 
Title: Correlation between scintillation indices and gradient drift wave amplitudes in the northern polar ionosphere
Issue Date: 21-Jul-2009
Series/Report no.: / 114 (2009)
DOI: 10.1029/2009JA014151
Keywords: scintillations
polar ionosphere
gradient drift
Subject Classification01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics 
01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations 
03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques 
05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction 
05. General::05.07. Space and Planetary sciences::05.07.02. Space weather 
Abstract: A model is developed of the gradient drift instability growth rate in the north polar cap ionosphere, utilizing a novel approach employing an ionospheric imaging algorithm. The growth rate values calculated by this model are in turn used to estimate how the amplitudes of actual gradient drift waves vary over time as the plasma drifts and the growth rates change with time. Ionospheric imaging is again used in order to determine plasma drift velocities. The final output from the model is in turn used to assess the linear correlation between the scintillation indices S4 and σØ recorded by several GPS L1 band scintillation receivers stationed in the north polar cap and mean gradient drift wave amplitudes. Four separate magnetic storm periods, totaling 13 days, are analyzed in this way. The results show weak but significant linear correlations between the mean wave amplitudes calculated and the observed scintillation indices at F layer altitudes.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
2009JA014151.pdfmain article632.95 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Aug 21, 2018


checked on Aug 21, 2018

Google ScholarTM