Please use this identifier to cite or link to this item:
Authors: Conte, A. M.* 
Dolfi, D.* 
Gaeta, M.* 
Misiti, V.* 
Mollo, S.* 
Perinelli, C.* 
Title: Experimental constraints on evolution of leucite-basanite magma
Issue Date: 2009
Series/Report no.: 4/21 (2009)
DOI: 10.1127/0935-1221/2009/0021-1934
Keywords: ultrapotassic magma
experimental petrology
limestone assimilation
Montefiascone Volcano
Roman Province
Subject Classification04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology 
Abstract: The separate effects of pressure (10 4 and 1.0 GPa), water, CO2, oxygen fugacity and calcium doping on the liquid line of descent of a primitive leucite-basanite magma (SiO2¼ 47.06 wt%, MgO¼ 12.76wt%andMg#¼ 75.1) fromthe Montefiascone Volcanic Complex (Vulsini volcanoes, central Italy) were experimentally investigated in the 1350–1160 C temperature range. Results indicate that low-pressure liquidus temperatures are 1280 C and that the high-pressure Tliquidus is 1350 C under anhydrous conditions; the latter is lowered to 1275 C by the addition of 3 wt% water. Cr-spinel is always the liquidus phase. At comparable fO2 values, high and low pressure runs produced the same phase assemblage (spinel þ olivine þ clinopyroxene) up to 50 % crystallization, although olivine was partially or totally replaced by phlogopite in hydrous experiments. An increase in oxygen fugacity and the addition of CaO determine an increase in both the degree of melt crystallization and the stability field of clinopyroxene. These determine contrasting effects on the composition of residual liquids: the former increases SiO2 content, whereas the latter induces the desilication of melts. The replacement of olivine by phlogopite, induced by increasing amounts of water, leads to the production of glass with lower potassium contents. Comparison of the natural and experimental melts shows that many of major and trace element variations exhibited by high-K primitive (i.e., highMg/Mg þ Fe) magmas at Montefiascone, are consistent with their derivation from a single parental leucite-basanite melt by fractional crystallization of different proportions of mineral phases, plus carbonate assimilation. The changes in phases stability and melt composition caused by carbonate assimilation may also have fundamental implications for the origin of the calcic highmagnesium leucitites and melilitites. In particular, the complex metasomatic interactions that can develop at the interface between potassic magmas and carbonate wall rocks, may lead to melting of calcite. This low-viscosity melt readily mixes with the surrounding magma inducing the crystallization of Ca-Tschermak-rich pyroxene and hercynitic spinel, affecting significantly the SiO2, CaO and alumina composition of the resulting hybrid melt. A key finding of our study is that magmas such as the studied leucite-basanite may be considered parental to the wide spectrum of mafic high-K compositions in the Roman Province, which have been traditionally considered as representing near primary magmas reflecting distinct mantle source compositions and/or processes.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
European Journal of Mineralogy 2009.pdf990.71 kBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Jul 22, 2018


checked on Jul 22, 2018

Google ScholarTM