Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/509
DC FieldValueLanguage
dc.contributor.authorallMcGonigle, A. J. S.; Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallAiuppa, A.; Dipartimento CFTA, Universita` di Palermo, Via Archirafi 36, Palermoen
dc.contributor.authorallHayes, A.R.; Department of Geography, University of Cambridge, Downing Place, Cambridgeen
dc.contributor.authorallOppenheimer, C.; Department of Geography, University of Cambridge, Downing Place, Cambridgeen
dc.date.accessioned2005-10-31T14:35:07Zen
dc.date.available2005-10-31T14:35:07Zen
dc.date.issued2005-02-09en
dc.identifier.urihttp://hdl.handle.net/2122/509en
dc.description.abstractGround-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be >100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.en
dc.format.extent503 bytesen
dc.format.extent185006 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries1/6(2005)en
dc.subjectDOASen
dc.subjectvolcanic SO2 emissions.en
dc.titleAccurate measurement of volcanic SO2 flux: Determination of plume transport speed and integrated SO2 concentration with a single deviceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ02003en
dc.identifier.URLhttp://www.agu.org/en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effectsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2004GC000845en
dc.relation.referencesAndres, R. J., and A. D. Kasgnoc (1998), A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25,251–25,261. Archer, C. L., and M. Z. Jacobson (2003), Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements, J. Geophys. Res., 108(D9), 4289,doi:10.1029/2002JD002076. Beychok, M. R. (1995), Fundamentals of Stack Gas Dispersion, 3rd ed., 201 pp., Milton R. Beychok, Irvine, Calif.Bobrowski, N., G. Ho¨nninger, B. Galle, and U. Platt (2003),Detection of bromine monoxide in a volcanic plume, Nature, 423, 273–276, doi:10.1038/nature01625. Caltabiano, T., R. Romano, and G. Budetta (1994), SO2 flux measurements at Mount Etna (Sicily), J. Geophys. Res., 99,12,809–12,819. Edmonds, M., R. A. Herd, B. Galle, and C. M. Oppenheimer (2003), Automated, high time-resolution measurements of SO2 flux at Soufrie`re Hills Volcano, Montserrat, Bull. Volcanol., 65, 578–586, doi:10.1007/s00445-003-0286-x. Favalli, M., F. Mazzarini, M. T. Pareschi, and E. Boschi (2004), Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): Insights from a mesoscale numerical model, Geophys. Res. Lett., 31, L09105,doi:10.1029/2003GL019281. Galle, B., C. Oppenheimer, A. Geyer, A. J. S. McGonigle, M. Edmonds, and L. A. Horrocks (2003), A miniaturised UV spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance, J. Volcanol. Geotherm. Res., 119, 241–254, doi:10.1016/S0377-0273(02)00356-6. Gerlach, T. M., K. A. McGee, A. J. Sutton, and T. Elias (1998), Rates of volcanic CO2 degassing from airborne determinations of SO2, emission rates and plume CO2/SO2: Test study at Pu’u ’O’o cone, Kilauea volcano, Hawaii, Geophys. Res. Lett., 25, 2675–2678. Horton, K., G. Williams-Jones, H. Garbeil, A. J. Sutton, T. Elias, and S. Clegg (2005), FLYSPEC: Validation of a robust and versatile ultraviolet correlation spectrometer for the real-time measurements of volcanic SO2 emissions, Bull. Volcanol., in press. McGonigle, A. J. S., C. Oppenheimer, B. Galle, T. A. Mather, and D. M. Pyle (2002), Walking traverse and scanning DOAS measurements of volcanic gas emission rates, Geophys. Res. Lett., 29(20), 1985, oi:10.1029/2002GL015827. McGonigle, A. J. S., C. Oppenheimer, A. R. Hayes, B. Galle, M. Edmonds, T. Caltabiano, G. Salerno, M. Burton, and T. A. Mather (2003), Sulphur dioxide fluxes from Mount Etna, Vulcano, and Stromboli measured with an automated scanning ultraviolet spectrometer, J. Geophys. Res., 108(B9), 2455, doi:10.1029/2002JB002261. McGonigle, A. J. S., C. Oppenheimer, V. I. Tsanev, S. Saunders, K. Mulina, S. Tohui, J. Bosco, J. Nahou, J. Kuduon, and F. Taranu (2004), Sulphur dioxide fluxes from Papua New Guinea’s volcanoes, Geophys. Res. Lett., 31, L08606, doi:10.1029/2004GL019568. Oppenheimer, C., A. J. S. McGonigle, P. Allard, M. J.Wooster, and V. Tsanev (2004), Sulfur, heat, and magma budget for Erta ’Ale lava lake, Ethiopia, Geology, 32, 509–512, doi:10.1130/G20281. Sparks, R. S. J. (2003), Dynamics of magma degassing, in Volcanic Degassing, edited by C. Oppenheimer, D. M. Pyle, and J. Barclay, Geol. Soc. Spec. Publ., 213, 5–22. Stoiber, R. E., L. L. Malinconico Jr., and S. N. Williams (1983), Use of the Correlation Spectrometer at volcanoes, in Forecasting Volcanic Events, edited by H. Tazieff and J. C. Sabroux, pp. 425–444, Elsevier,New York. Stoiber, R. E., S. N. Williams, and B. Huebert (1987), Annual contribution of sulfur dioxide to the atmosphere by volcanoes, J. Volcanol. Geotherm. Res., 33, 1–8. Sutton, A. J., T. Elias, T. M. Gerlach, and J. B. Stokes (2001), Implications for eruptive processes as indicated by sulfur dioxide emissions from Kilauea Volcano,Hawaii, 1979–1997, J. Volcanol. Geotherm. Res., 108,283–302. Wardell, L. J., P. R. Kyle, N. Dunbar, and B. Christenson (2001), White Island volcano, New Zealand: Carbon dioxide and sulfur dioxide emission rates and melt inclusion studies, Chem. Geol., 177, 187–200. Williams-Jones, G., K. Horton, H. Garbeil, P. J. Mouginis-Mark, A. J. L. Harris, A. J. Sutton, and T. Elias(2005), Accurately measuring volcanic plume velocities with multiple UV spectrometers, Bull. Volcanol., in press.en
dc.description.fulltextpartially_openen
dc.contributor.authorMcGonigle, A. J. S.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorHayes, A.R.en
dc.contributor.authorOppenheimer, C.en
dc.contributor.departmentDepartment of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento CFTA, Universita` di Palermo, Via Archirafi 36, Palermoen
dc.contributor.departmentDepartment of Geography, University of Cambridge, Downing Place, Cambridgeen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Geography, University of Cambridge, Downing Place, CB2 3EN Cambridge, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDepartment of Geography, University of Cambridge, Cambridge, UK-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0003-4506-7260-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
McGonigle et al. G3.pdfMain article180.67 kBAdobe PDF
Redirect AGU.htmlRedirect-AGU503 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

29
checked on Feb 10, 2021

Page view(s) 5

440
checked on Apr 24, 2024

Download(s) 50

180
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric