Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5079
Authors: Corradini, S.* 
Merucci, L.* 
Prata, A. J.* 
Title: Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash
Journal: Atmospheric Measuremnet Techniques 
Series/Report no.: /2 (2009)
Publisher: EGU
Issue Date: 26-May-2009
URL: http://www.atmos-meas-tech.net/2/177/2009/amt-2-177-2009.pdf
Keywords: volcanic ash retrieval
volcanic so2 retrieval
ash correction
remote sensing
MODIS
SEVIRI
Etna volcano
Subject Classification01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects 
01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques 
04. Solid Earth::04.08. Volcanology::04.08.01. Gases 
04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring 
04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques 
Abstract: The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR) data are used. The ash particles within the plume with effective radii from 1 to 10μm reduce the Top Of Atmosphere (TOA) radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7μm SO2 absorption bands, and the split window bands centered around 11 and 12μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spin Enhanced Visible and Infrared Imager (SEVIRI) measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD) procedures, respectively. The simulated TOA radiance Look-Up Table (LUT) needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure underestimates the ash correction compared with the more time consuming but more accurate correction procedure. Such underestimation is greater for instruments having better ground pixel resolution, i.e. greater for MODIS than for SEVIRI.
Appears in Collections:Article published / in press

Files in This Item:
File Description SizeFormat
corradini_amt-2-177-2009_published.pdfMain article3.65 MBAdobe PDFView/Open
Show full item record

Page view(s) 20

324
checked on Apr 17, 2024

Download(s) 50

242
checked on Apr 17, 2024

Google ScholarTM

Check