Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5078
DC FieldValueLanguage
dc.contributor.authorallMonna, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDahm, T.; Institut für Geophysik, Universität Hamburg, Hamburg, Germanyen
dc.date.accessioned2009-06-16T07:39:15Zen
dc.date.available2009-06-16T07:39:15Zen
dc.date.issued2009-06-10en
dc.identifier.urihttp://hdl.handle.net/2122/5078en
dc.description.abstractWe propose a 3-D crust–upper mantle seismic attenuation (QP) model of the southern Apennines–Calabrian Arc subduction zone together with a 3-D velocity (VP) model. The QP model is calculated from relative t* using the spectral ratio method and the VP from traveltime data. The final data set used for the inversion of the VP model consists of 2400 traveltime arrivals recorded by 34 short-period stations that are part of the Italian National Seismic Network, and for the QP model, 2178 Pn phases recorded by a subset of 32 stations. Traveltimes and waveforms come from 272 intermediate-depth Calabrian slab events. This 3-D model of attenuation, together with the 3-D velocity model, improves our knowledge of the slab/mantle wedge structure and can be a starting point in determining the physical state of the asthenosphere (i.e., its temperature, the presence of melt and/or fluids) and its relation to volcanism found in the study area. Main features of the QP and VP models show that the mantle wedge/slab, in particular, the area of highest attenuation, is located in a volume underlying the Marsili Basin. The existence and shape of this main low-QP (and low-VP) anomaly points to slab dehydration and fluid/material flow, a process that may explain the strong geochemical affinities between the subduction-related magmas from Stromboli and Vesuvius. Other interesting features in the models are strong lateral variations in QP and VP that are put in relation with known important tectonic structures and volcanic centers in the area.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 114 (2009)en
dc.subjectseismic attenuation tomographyen
dc.subjectCalabrian Arc subduction zoneen
dc.subjectfluids and meltsen
dc.titleThree-dimensional P wave attenuation and velocity upper mantle tomography of the southern Apennines–Calabrian Arc subduction zoneen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06304en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and stateen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.identifier.doi10.1029/2008JB005677en
dc.relation.referencesAmato, A., B. Alessandrini, and G. B. Cimini (1993), Teleseismic wave tomography of Italy, in Seismic Tomography: Theory and Practice, edited by H. M. Iyer and K. Hirahaha, pp. 361– 397, CRC Press, Boca Raton, Fla. Argnani, A. (2000), The southern Tyrrhenian subduction system: Recent evolution and neotectonic implications, Ann. Geofis., 43, 585–607. Baccheschi, P., L. Margheriti, and M. S. Steckler (2007), Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy), Geophys. Res. Lett., 34, L05302, doi:10.1029/2006GL028899. Barba, S., R. Di Giovambattista, and G. Smeriglio (1995), Italian seismic databank allows on-line access, Eos Trans. AGU, 76(9), 89, doi:10.1029/ 95EO00042. Benz, H. M., B. A. Chouet, P. B. Dawson, R. A. Kahr, and J. A. Hole (1996), Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111 – 8128, doi:10.1029/ 95JB03046. Bianco, F., E. Del Pezzo, M. Castellano, J. Ibanez, and F. Di Luccio (2002), Separation of intrinsic and scattering attenuation in the Southern Apennine zone, Italy, Geophys. J. Int., 150, 10 – 22, doi:10.1046/ j.1365-246X.2002.01696.x. Calcagnile, G., and G. F. Panza (1981), The main characteristics of the lithosphere-asthenosphere System in Italy and surrounding regions, Pure Appl. Geophys., 119, 865– 879, doi:10.1007/BF01131263. Catalano, R., C. Doglioni, and S. Merlini (2001), On the Mesozoic Ionian Basin, Geophys. J. Int., 144, 49 – 64, doi:10.1046/j.0956-540X. 2000.01287.x. Cheng, H.-X., and B. L. N. Kennett (2002), Frequency dependence of seismic wave attenuation in the upper mantle beneath the Australian region, Geophys. J. Int., 150, 45 – 57, doi:10.1046/j.1365-246X. 2002.01677.x. Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view to the Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251– 268, doi:10.1016/j.tecto.2004.09.013. Chiarabba, C., P. De Gori, and F. Speranza (2008), The southern Tyrrhanian subduction zone: Deep geometry, magmatism and Plio-Pleistocene evolution, Earth Planet. Sci. Lett., 268, 408 – 423, doi:10.1016/ j.epsl.2008.01.036. Cimini, G. B. (1999), P wave deep velocity structure of the southern Tyrrhenian subduction zone from nonlinear teleseismic traveltime tomography, Geophys. Res. Lett., 26, 3709– 3712, doi:10.1029/1999GL010907. Cimini, G. B. (2004), Tomographic studies of the deep structure of the Tyrrhenian-Apennine system, in From Seafloor to Deep Mantle: Architecture of the Tyrrehanian Backarc Basin, Mem. Descr. Carta Geol. d’It, vol. XLIV, edited byM. P.Marani, F. Gamberi, and E. Bonatti, pp. 15– 28, Agenzia per la Prot. dell’Ambiente e per i Serv. Tec. (APAT), Rome. Cimini, G. B., and P. De Gori (2001), Nonlinear P wave tomography of subducted lithosphere beneath the central-southern Apennines (Italy), Geophys. Res. Lett., 28, 4387– 4390, doi:10.1029/2001GL013546. Civello, S., and L. Margheriti (2004), Toroidal mantle flow around the Calabrian slab (Italy) from SKS splitting, Geophys. Res. Lett., 31, L10601, doi:10.1029/2004GL019607. D’Agostino, N., A. Avallone, D. Cheloni, E. D’Agostino, S. Mantenuto, and G. Selvaggi (2008), Active tectonics of the Adriatic region from GPS and earthquake slip vectors, J. Geophys. Res., 113, B12413, doi:10.1029/ 2008JB005860. Della Vedova, B., F. Mongelli, G. Pellis, and G. Zito (1991a), Campo regionale del flusso di calore nel Tirreno, in Atti del 10 GNGTS, pp. 817– 825, Esagrafico, Rome. Della Vedova, B., F. Mongelli, G. Pellis, P. Squarci, L. Taffi, and G. Zito (1991b), Heat flow map of Italy, Cons. Naz. delle Ric., Pisa, Italy. Del Pezzo, E., M. Simini, and J. M. Ibanez (1996), Separation of intrinsic and scattering Q for volcanic areas: A comparison between Etna and Campi Flegrei, J. Volcanol. Geotherm. Res., 70, 213–219, doi:10.1016/ 0377-0273(95)00056-9. Di Giovambattista, R., and S. Barba (1997), An estimate of hypocentre location accuracy in a large network: Possible implications for tectonic studies in Italy, Geophys. J. Int., 129, 124 – 132, doi:10.1111/j.1365- 246X.1997.tb00941.x. Di Stefano, R., C. Chiarabba, F. Lucente, and A. Amato (1999), Crustal and uppermost mantle structure in Italy from the inversion of P-wave arrival times: Geodynamic implications, Geophys. J. Int., 139, 483 – 498, doi:10.1046/j.1365-246x.1999.00952.x. Evans, J. R., and J. J. Zucca (1988), Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range, J. Geophys. Res., 93, 15,016– 15,036. Evans, J. R., and J. J. Zucca (1993), Active source, high-resolution (NeHT) tomography: Velocity and Q, in Seismic Tomography: Theory and Practice, pp. 695– 732, Chapman and Hall, London. Faccenna, C., P. Davy, J.-P. Brun, R. Funiciello, D. Giardini, M. Mattei, and T. Nalpas (1996), The dynamics of back-arc extension: An experimental approach to the opening of the Tyrrhenian Sea, Geophys. J. Int., 126, 781–795. Faccenna, C., F. Funiciello, D. Giardini, and P. Lucente (2001), Episodic back-arc extension during restricted mantle convection in the central Mediterranean, Earth Planet. Sci. Lett., 187, 105 – 116, doi:10.1016/ S0012-821X(01)00280-1. Fehler, M., M. Hoshiba, H. Sato, and K. Obara (1992), Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance, Geophys. J. Int., 108, 787– 800, doi:10.1111/j.1365-246X.1992.tb03470.x. Frepoli, A., G. Selvaggi, C. Chiarabba, and A. Amato (1996), State of stress in the Southern Tyrrhenian subduction zone from faultplane solutions, Geophys. J. Int., 125, 879–891, doi:10.1111/j.1365- 246X.1996.tb06031.x. Giampiccolo, E., S. Gresta, and F. Rasconà (2004), Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily, Phys. Earth Planet. Inter., 145, 55–66, doi:10.1016/j.pepi.2004.02.004. Goes, S., R. Govers, and P. Vacher (2000), Shallow mantle temperatures under Europe from P and S wave tomography, J. Geophys. Res., 105, 11,153–11,170, doi:10.1029/1999JB900300. Gvirtzman, Z., and A. Nur (1999), The formation of Mount Etna as the consequence of slab rollback, Nature, 401, 782– 785, doi:10.1038/44555. Hacker, B. R., S. M. Peacock, G. A. Abers, and S. D. Holloway (2003), Subduction factory: 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res., 108(B1), 2030, doi:10.1029/2001JB001129. Hoshiba, M., A. Rietbrock, F. Sherbaum, H. Nakahara, and C. Haberland (2001), Scattering attenuation and intrinsic absorption using uniform and depth dependent model—Application to full seismogram envelope recorded in northern Chile, J. Seismol., 5, 157 – 179, doi:10.1023/ A:1011478202750. Italiano, F., M. Martelli, G. Martinelli, and P. M. Nuccio (2000), Geochemical evidence of melt intrusions along lithospheric faults of the southern Apennines, Italy: Geodynamic and seismogenic implications, J. Geophys. Res., 105, 13,569– 13,578, doi:10.1029/2000JB900047. Karato, S. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 1623 – 1626, doi:10.1029/ 93GL01767. Karato, S., and B. Karki (2001), Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21,771– 21,783, doi:10.1029/2001JB000214. Karato, S., and H. A. Spetzler (1990), Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle, Rev. Geophys., 28, 399 – 421, doi:10.1029/ RG028i004p00399. Kennett, B. L. N., E. R. Engdahl, and R. Buland (1995), Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108– 124, doi:10.1111/j.1365-246X.1995.tb03540.x. Kissling, E., W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer (1994), Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19,635–19,646, doi:10.1029/93JB03138. Kissling, E., U. Kradolfer, and H. Maurer (1995), VELEST User’s Guide—Short Introduction, technical report, Inst. of Geophys. and Swiss Seismol., Serv. Eidg. Tech. Hochsch., Zurich. Lucente, F. P., C. Chiarabba, G. B. Cimini, and D. Giardini (1999), Tomographic constraints on the geodynamic evolution of the Italian region, J. Geophys. Res., 104, 20,307–20,327, doi:10.1029/1999JB900147. Malinverno, A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian sea and shortening in the Apennines as a result of arc migration driven by the sinking of the lithosphere, Tectonics, 5, 227 – 245, doi:10.1029/ TC005i002p00227. Mann, M. E., and J. M. Lees (1996), Robust estimation of background noise and signal detection in climatic time series, Clim. Change, 33, 409– 445, doi:10.1007/BF00142586. Marani, M. P., and T. Trua (2002), Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Tyrrhenian Sea), J. Geophys. Res., 107(B9), 2188, doi:10.1029/2001JB000285. Mele, G. (1998), High-frequency wave propagation from mantle earthquakes in the Tyrrhenian Sea: New constraints for the geometry of the south Tyrrhenian subduction zone, Geophys. Res. Lett., 25, 2877– 2880, doi:10.1029/98GL02175. Mele, G., A. Rovelli, D. Seber, and M. Barazangi (1997), Shear wave attenuation in the lithosphere beneath Italy and surrounding regions: Tectonic implications, J. Geophys. Res., 102, 11,863– 11,875, doi:10.1029/97JB00262. Mele, G., A. Rovelli, and D. Seber (1998), Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and surrounding regions, J. Geophys. Res., 103, 12,529–12,543, doi:10.1029/ 98JB00596. Mongelli, F., P. Harabaglia, G. Martinelli, P. Squarci, and G. Zito (1996), Nuove misure di flusso geotermico in Italia meridionale: Possibili implicazioni sismotettoniche, in Atti 14 Convegno del Gruppo Naz. di Geofisica della Terra Solida, pp. 929– 939, Cons. Naz. delle Ric., Rome. Montuori, C., G. B. Cimini, and P. Favali (2007), Teleseismic tomography of the southern Tyrrhenian subduction zone: New results from seafloor and land recordings, J. Geophys. Res., 112, B03311, doi:10.1029/ 2005JB004114. Neri, G., B. Orecchio, C. Totaro, G. Falcone, and D. Presti (2009), Subduction beneath southern Italy close the ending: Results from seismic tomography, Seismol. Res. Lett., 80(1), 63– 70. Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, Trans. Math. Software, 8, 43– 71, doi:10.1145/355984.355989. Panza, G. F., R. B. Raykova, E. Carminati, and C. Doglioni (2007), Upper mantle flow in the western Mediterranean, Earth Planet. Sci. Lett., 257, 200–214, doi:10.1016/j.epsl.2007.02.032. Park, J., C. R. Lindberg, and F. L. Vernon III (1987), Multitaper spectral analysis of high-frequency seismograms, J. Geophys. Res., 92, 12,675–12,684, doi:10.1029/JB092iB12p12675. Patacca, E., and P. Scandone (1989), Post-Tortonian mountain building in the Apennines: The role of the passive sinking of a relic lithosphere, in The Lithosphere in Italy, Adv. Earth Sci. Res., vol. 80, edited by A. Boriani et al., pp. 157– 176, Acc. Naz. Lincei, Rome. Peccerillo, A. (2001), Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli volcanoes: Petrogenic, geodynamic and volcanological implications, Mineral. Petrol., 73, 93– 105, doi:10.1007/ s007100170012. Peccerillo, A. (2005), Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics, Springer, Berlin. Piromallo, C., and A. Morelli (1997), Imaging the Mediterranean upper mantle by P wave travel time tomography: Preliminary results, Annal. Geofis., 40, 963–979. Piromallo, C., and A. Morelli (2003), P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108(B2), 2065, doi:10.1029/2002JB001757. Podvin, P., and I. Lecompte (1991), Finite difference computation of travel times in very contrasted velocity models: A massively parallel approach and its associated tools, Geophys. J. Int., 105, 271–284, doi:10.1111/ j.1365-246X.1991.tb03461.x. Pontevivo, G., and G. F. Panza (2006), The lithosphere-asthenosphere system in the Calabrian Arc and surrounding seas—southern Italy, Pure Appl. Geophys., 163, 1,617– 1,659, doi:10.1007/s00024-006-0093-3. Richards, P. G., and W. Menke (1983), The apparent attenuation of a scattering medium, Bull. Seismol. Soc. Am., 73, 1005– 1021. Romanowicz, B. (1995), A global tomographic model of shear attenuation in the upper mantle, J. Geophys. Res., 100, 12,375–12,394, doi:10.1029/ 95JB00957. Rosenbaum, G., and G. S. Lister (2004), Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics, 23, TC1013, doi:10.1029/2003TC001518. Roth, E. G., D. A. Wiens, and D. Zhao (2000), An empirical relationship between seismic attenuation and velocity anomalies in the upper mantle, Geophys. Res. Lett., 27, 601–604, doi:10.1029/1999GL005418. Sanders, C. O. (1993), Local earthquake tomography: Attenuation—theory and results, in Seismic Tomography: Theory and Practice, pp. 676–694, Chapman and Hall, London. Sato, H., M. Fehler, and R.-S. Wu (2000), Scattering and attenuation of seismic waves in the lithosphere, in Handbook of Earthquake and Engineering Seismology, edited by W. H. K. Lee, chap. 13, pp. 195 – 208, Elsevier, New York. Selvaggi, G., and C. Chiarabba (1995), Seismicity and P-wave velocity image of the southern Tyrrhenian subduction zone, Geophys. J. Int., 121, 818– 826, doi:10.1111/j.1365-246X.1995.tb06441.x. Serri, G. (1990), Neogene-Quaternary magmatism of the Tyrrhenian region: Characterization of the magma sources and geodynamic implications, Mem. Soc. Geol. Ital., 41, 90– 94. Serri, G., F. Innocenti, and P. Manetti (2001), Magmatism from Mesozoic to present: Petrogenesis, time-space distribution and geodynamic implications, in Anatomy of a Mountain: The Apennines and the Adjacent Mediterranean Basins, edited by G. B. Vai and P. I. Martini, pp. 77– 104, Springer, New York. Schurr, B., G. Asch, A. Rietbrock, R. Trumbull, and C. Haberland (2003), Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography, Earth Planet. Sci. Lett., 215, 105–119, doi:10.1016/S0012-821X(03)00441-2. Sgroi, T., T. Braun, T. Dahm, and F. Frugoni (2006), An improved seismicity picture of the southern Tyrrhenian area by the use of OBS and landbased networks: The TYDE experiment, Ann. Geophys., 49, 801–817. Spakman, W. (1991), Delay time tomography of the upper mantle below Europe, the Mediterranean, and Asia Minor, Geophys. J. Int., 107, 309– 332, doi:10.1111/j.1365-246X.1991.tb00828.x. Spakman, W., and R. Wortel (2004), A tomographic view on western Mediterranean geodynamics, in The Transmed Atlas: The Mediterranean Region from Crust to Mantle, pp. 31– 52, Springer, New York. Speranza, F., and M. Chiappini (2002), Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis, J. Geophys. Res., 107(B11), 2290, doi:10.1029/2000JB000027. Teng, T. L. (1968), Attenuation of body waves and the Q structure of the mantle, J. Geophys. Res., 73, 2195– 2208, doi:10.1029/JB073i006p02195. Trua, T., G. Serri, and P. L. Rossi (2004), Coexistence of IAB-type and OIB-type magmas in the southern Tyrrhenian back-arc basin: Evidence from recent seafloor sampling and the geodynamic implications, in From Seafloor to Deep Mantle: Architecture of the Tyrrehanian Backarc Basin, Mem. Descr. Carta Geol. d’It, vol. 44, edited by M. P. Marani, F. Gamberi, and E. Bonatti, pp. 83– 96, Agenzia per la Prot. dell’Ambiente e per i Serv. Tec. (APAT), Rome. Wessel, P., and W. H. F. Smith (1991), Free software helps map and display data, Eos Trans. AGU, 72(41), 441. Zito, G., F. Mongelli, S. De Lorenzo, and C. Doglioni (2003), Heat flow and geodynamics in the Tyrrhenian Sea, Terra Nova, 15, 425 – 432, doi:10.1046/j.1365-3121.2003.00507.x.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMonna, S.en
dc.contributor.authorDahm, T.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentInstitut für Geophysik, Universität Hamburg, Hamburg, Germanyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptGFZ Geoforschungszentrum Potsdam-
crisitem.author.orcid0000-0001-9241-1322-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Monna_JGR_2009.pdfmain article3.74 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

17
checked on Feb 10, 2021

Page view(s) 10

380
checked on Apr 13, 2024

Download(s)

44
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric