Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/505
DC FieldValueLanguage
dc.contributor.authorallDe Gregorio, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallValenza, M.; Dipartimento di Chimica e Fisica della Terra ed Applicazioni, Via Archirafi 36, 90136 Palermo, Italyen
dc.date.accessioned2005-10-28T14:14:23Zen
dc.date.available2005-10-28T14:14:23Zen
dc.date.issued2005-09-07en
dc.identifier.urihttp://hdl.handle.net/2122/505en
dc.description.abstractA new method for extracting dissolved gases in natural waters has been developed and tested, both in the laboratory and in the field. The sampling device consists of a polytetrafluroethylene (PTFE) tube (waterproof and gas permeable) sealed at one end and connected to a glass sample holder at the other end. The device is pre-evacuated and subsequently dipped in water, where the dissolved gases permeate through the PTFE tube until the pressure inside the system reaches equilibrium. A theoretical model describing the time variation in partial gas pressure inside a sampling device has been elaborated, combining the mass balance and ‘‘Solution-Diffusion Model’’ which describes the gas permeation process through a PTFE membrane). This theoretical model was used to predict the temporal evolution of the partial pressure of each gas species in the sampling device. The model was validated by numerous laboratory tests. The method was applied to the groundwater of Vulcano Island (southern Italy). The results suggest that the new sampling device could easily extract the dissolved gases from water in order to determine their chemical and isotopic composition.en
dc.description.sponsorship- European Social Fund.en
dc.format.extent503 bytesen
dc.format.extent446781 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries9/6(2005)en
dc.subjectdissolved gasesen
dc.subjecthelium isotopeen
dc.subjectPTFE membraneen
dc.subjectVulcano Islanden
dc.titleA PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applicationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ09005en
dc.identifier.URLhttp://www.agu.org/en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2005GC000947en
dc.relation.referencesAeschbach-Hertig, W., F. Peeters, U. Beyerle, and R. Kipfer (1999), Interpretation of dissolved atmospheric noble gases in natural waters, Water Resour. Res., 35(9), 2779–2792. Aiuppa, A., G. Dongarrà, G. Capasso, and P. Allard (2000),Trace elements in thermal groundwaters of Vulcano Island (Sicily), J. Volcanol. Geotherm. Res., 98, 189–207. Allard, P., P. Jean-Baptiste, W. D’Alessandro, F. Parello, B. Parisi, and C. Flehoc (1997), Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy, Earth Planet. Sci. Lett., 148, 501–516. Andrews, J. N., J. E. Goldbrunner, W. G. Darling, G. B. Hooker, M. J. Youngman, L. Eichinger, W. Rauert, and W. Stichler (1985), A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria, Earth Planet. Sci. Lett., 73, 317–332. Andrews, J. N., N. Hussain, and M. J. Youngman (1989), Atmospheric and radiogenic gases in groundwaters from stripa granite, Geochim. Cosmochim. Acta, 53, 1831–1841. Barrer, R. M. (1934), Permeation, diffusion and solution of gases in organic polymers, Trans. Faraday Soc., 35, 628–643. Bayer, R., P. Schlosser, G. Bonisch, H. Rupp, F. Zaucker, and G. Zimmek (1989), Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He, in Growth Method, pp. 241–279, Springer, New York. Beyerle, U., I. W. Aeschbach-Herting, D. M. Imboden, H. Baur, T. Graf, and R. Kipfer (2000), A mass spectrometric system for the analysis of noble gases and tritium from water samples, Environ. Sci. Technol., 34, 2042–2050. Bolognesi, L. (2000), Earthquake-induced variations in the composition of the water in the geothermal reservoir at Vulcano Island, Italy, J. Volcanol. Geotherm. Res., 99, 139–150. Bolognesi, L., and F. D’Amore (1993), Isotopic variation of the hydrothermal system on Vulcano Island, Italy, Geochim. Cosmochim. Acta, 57, 2069–2082. Brai, M., S. Hauser, S. Bellia, P. Puccio, and S. Rizzo (1995), Natural gamma radiation of rocks and soils from Vulcano, Nucl. Geophys., 9, 121–127. Capasso, G., and S. Inguaggiato (1998), A simple method for determination of dissolved gases in natural water: An application to thermal waters from Vulcano Island, Appl. Geochem.,13(5), 631–642. Capasso, G., G. Dongarrà , R. Favara, S. Hauser, and M. Valenza (1991), Chemical changes in waters from Vulcano Island: An update, Acta Vulcanol., 1, 199–209. Capasso, G., R. Favara, and S. Inguaggiato (1997), Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: An interpretative model of fluid circulation, Geochim. Cosmochim. Acta, 61,3425–3440. Capasso, G., R. Favara, and S. Inguaggiato (2000), Interaction between fumarolic gases and thermal groundwaters at Vulcano Island (Italy): Evidences from chemical composition of dissolved gases in waters, J. Volcanol. Geotherm. Res., 102, 309–318. Capasso, G., W. D’Alessandro, R. Favara, S. Inguaggiato, and F. Parello (2001), Interaction between deep fluids and the shallow groundwaters on Vulcano Island, J. Volcanol. Geotherm. Res., 108, 187–198. Carapezza, M., P. M. Nuccio, and M. Valenza (1980), Geochemical Precursor of Earthquakes: High Pressure Science and Technology, edited by B. Vodar and Ph. Marteau, Elsevier, New York. Chapelle, F. H., D. A. Vroblesky, J. C. Woodward, and D. R. Lovley (1997), Practical considerations for measuring hydrogen concentrations in groundwater, Environ. Sci. Technol., 31, 2873–2877. Chiodini, G. (1996), Gases dissolved in groundwaters: Analytical methods and examples of applications in central Italy, paper presented at Rome Seminar on Environmental Geochemistry, Univ. degli Studi di Genova Dip. di Sci. della Terra, Rome, 22–26 May. Chiozzi, P., V. Pasquale, M. Verdoya, and S. Minato (2001),Natural gamma-radiation in the Aeolian volcanic arc, Appl. Radiat. Isotopes, 55, 737–744. Cortecci, G., E. Dinelli, L. Bolognesi, T. Boschetti, and G. Ferrara (2001), Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy, Geothermics, 30, 69–91. D’Alessandro, W., S. De Gregorio, G. Dongarra`, S. Gurrieri, F. Parello, and B. Parisi (1997), Chemical and isotopic characterization of the gases of Mount Etna, J. Volcanol. Geotherm. Res., 78, 65–76. Emerson, S., C. Stump, B. Johnson, and D. M. Karl (2002), In situ determination of oxygen and nitrogen dynamics in the upper ocean, Deep Sea Res., Part I, 49, 941–952. Favara, R., S. Francofonte, P. Madonia, and M. Valenza et al. (1997), Modello idrogeologico dell’Isola di Vulcano e suo signifcato per la sorveglianza geochimica, in Program and Abstracts of GNV-CNR Annual Meeting 1996, Rome 3–5 March, pp. 162–163, Gruppo Nazl. per la Vulcanol., Rome. Ghisetti, F. (1979), Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina-Fiumefreddo, Tindari-Letojanni e Alia-Malvagna (Sicilia nord-orientale): Uno studio microtettonico, Geol. Romana, 18, 23–58. Gurrieri, S., S. Hauser, and M. Valenza (1984), Indagine preliminare su alcune sorgenti termali della Calabria per una futura sorveglianza geochimica, Miner. Petrogr. Acta, 28,101–122. Holt, B. D., N. C. Sturchio, G. B. Arehart, and A. J. Bakel (1995), Ultrasonic vacuum extraction of gases from water for chemical and isotopic analysis, Chem. Ecol., 122, 275–284. Inguaggiato, S., and A. Rizzo (2004), Dissolved helium isotope ratios in ground-waters: A new technique based on gaswater re-equilibration and its application to a volcanic area, Appl. Geochem., 19(5), 665–673. Italiano, F., and P. M. Nuccio (1996), Isotopic ratios of helium in fumaroles from Vulcano Island, Acta Vulcanol., 8(2), 212–214. Italiano, F., G. Martinelli, and A. Rizzo (2004), Geochemical evidence of seismogenic-induced anomalies in the dissolved gases of thermal waters: A case study of Umbria (Central Apennines, Italy) both during and after the 1997–1998 seismic swarm, Geochem. Geophys. Geosyst.,5, Q11001, doi:10.1029/2004GC000720. Jacinthe, P. A., and P. M. Groffman (2001), Silicone rubber sampler to measure dissolved gases in saturated soils and waters, Soil Biol. Biochem., 33, 907–912. Kampbell, D. H., J. T. Wilson, and D. M. McInnes (1998), Determining dissolved hydrogen, methane, and vinyl chloride concentrations in aqueous solution on a nanomolar scale with the bubble strip method, paper presented at 1998 Conference on Hazardous Waste Research, Hazard. Substance Res. Cent., Kansas State Univ., Snowbird, Utah, 18–21 May. Kana, T. M., C. Darkangelo, M. D. Hunt, J. B. Oldham, G. E. Bennett, and J. C. Cornwell (1994), Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples, Anal. Chem., 66, 4166–4170. Ludin, A., R. Weppernig, G. Boenisch, and P. Schlosser (1997), Mass spectrometric measurement of helium isotopes and tritium, technical report, Lamont-Doherty Earth Observatory, Palisades, N. Y. Mamyrin, B. A., and I. N. Tolstikhin (1984), Helium Isotopes in Nature, 274 pp., Elsevier, New York. Manning, A. H., and D. K. Solomon (2003), Using noble gases to investigate mountain-front recharge, J. Hydrol., 275, 194–207. Manning, A. H., A. L. Sheldon, and D. K. Solomon (2000), A new method of noble gas sampling that improves excess air determinations, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract H71A-09. Mazor, E. (1977), Geothermal tracing with atmospheric and radiogenic noble gases, Geothermics, 5, 21–36. McNeil, C. L., B. D. Johnson, and D. M. Farmer (1995), In-situ measurement of dissolved nitrogen and oxygen in the ocean, Deep Sea Res., Part I, 42, 819–826. Ozima, M., and F. A. Podosek (2002), Noble Gas Geochemistry, 2nd ed., 286 pp., Cambridge Univ. Press, New York. Parkhurst, D. L. (1995), User’s guide to PHREEQC—A computer program for speciation, reaction-path, advectivetransport, and inverse geochemical calculations, U.S. Geol. Surv. Water Resour. Invest. Rep., 95-4227, 143 pp. Peeters, F., U. Beyerle, W. Aeschbach-Hertig, J. Holocher, M. S. Brennwald, and R. Kipfer (2002), Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios, Geochim. Cosmochim. Acta, 67(4), 587–600. Polyak, B. G. (2003), Helium isotopes in the ground fluids of the Baikal Rift and its surroundings: Contribution to continental rifting geodynamics, Russ. J. Earth Sci., 5(1). Sanford, W. E., R. G. Shropshire, and K. D. Solomon (1996), Dissolved gas tracers in groundwater: Simplified injection, sampling, and analysis, Water Resour. Res., 32(6), 1635– 1642. Sano, Y., N. Takahata, G. Igarashi, N. Koizumi, and N. C. Sturchio (1998), Helium degassing related to the Kobe earthquake, Chem. Geol., 1501, 171–179. Sano, Y., N. Takahata, Y. Nishio, T. B. Fischer, and S. N. Williams (2001), Volcanic flux of nitrogen from the Earth, Chem. Geol., 171, 263–271. Solomon, D. K., P. G. Cook, and W. E. Sanford (1998), Dissolved gases in subsurface hydrology, in Isotope Tracers in Catchment Hydrology, edited by C. Kendall and J. J. McDonnell, pp. 291–318, Elsevier, New York. Stute, M., J. F. Clark, P. Schlosser, and W. S. Broecker (1995), A 30,000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico, Quat. Res., 43, 209–220. Sugisaki, R., and K. Taki (1987), Simplified analyses of He, Ne and Ar dissolved in natural waters, Chem. J., 21, 21–27. Takahata, N., G. Igarashi, and Y. Sano (1997), Continuous monitoring of dissolved gas concentrations in groundwater using a quadrupole mass spectrometer, Appl. Geochem., 12,377–382. Taylor, J. R. (1982), An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed., 327 pp., Univ. Sci. Books, Mill Valley, Calif. Tedesco, D., and K. Nagao (1996), Radiogenic 4He, 21Ne and 40Ar in fumarolic gases on Vulcano: Implication for presence of continental crust beneath the island, Earth Planet. Sci. Lett., 144, 517–528. Tonani, F. (1971), Concepts and techniques for the geochemical forecasting of volcanic eruption, UNESCO Paris 145–166 Geol. Bull., 41(3/4), 309–322. Van Amerongen, G. J. (1946), The permeability of different rubbers to gases and its relation to diffusivity and solubility, J. Appl. Phys., 17, 972–986. Ventura, G. (1994), Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian Archipelago, southern Tyrrhenian Sea), J. Volcanol. Geotherm. Res., 60, 207–224. Walsh, K. P., and R. G. McLaughlan (1999), Bubble extraction of dissolved gases from groundwater samples, Water Air Soil Pollut., 115, 525–534. Weiss, R. F. (1968), Piggyback samplers for dissolved gas studies on sealed water samples, Deep Sea Res. Oceanogr.Abstr., 15, 695–699. Wijmans, J. G., and R. W. Baker (1995), The solution diffusion model: A review, J. Membrane Sci., 107, 1–21.en
dc.description.fulltextpartially_openen
dc.contributor.authorDe Gregorio, S.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorValenza, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra ed Applicazioni, Via Archirafi 36, 90136 Palermo, Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptDiSTeM, Universit a degli Studi di Palermo, Palermo, Italy-
crisitem.author.orcid0000-0001-7713-9105-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
De Gregorio et al., G3 2005.pdfMain article436.31 kBAdobe PDF
Redirect AGU.htmlRedirect-AGU503 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

9
checked on Feb 10, 2021

Page view(s) 50

370
checked on Apr 17, 2024

Download(s)

79
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric