Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5051
DC FieldValueLanguage
dc.contributor.authorallAgnini, C.; Dipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.authorallMacrì, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBackman, J.; Department of Geology and Geochemistry, Stockholm University, Stockholm, Swedenen
dc.contributor.authorallBrinkhuis, H.; Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlandsen
dc.contributor.authorallFornaciari, E.; Dipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.authorallGiusberti, L.; Dipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.authorallLuciani, V.; Dipartimento di Scienze della Terra, Polo Scientifico Tecnologico, Università di Ferrara, Ferrara, Italyen
dc.contributor.authorallRio, D.; Dipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.authorallSluijs, A.; Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlandsen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-05-22T12:23:10Zen
dc.date.available2009-05-22T12:23:10Zen
dc.date.issued2009-05-14en
dc.identifier.urihttp://hdl.handle.net/2122/5051en
dc.description.abstractAt least two transient events of extreme global warming occurred superimposed on the long-term latest Paleocene and early Eocene warming trend in the Paleocene-Eocene thermal maximum (PETM) (or ETM1 ~55.5 Ma) and the Elmo (or ETM2 ~53.6 Ma). Other than warmth, the best known PETM is characterized by (1) significant injection of 13C-depleted carbon into the ocean-atmosphere system, (2) deep-sea carbonate dissolution, (3) strong biotic responses, and (4) perturbations of the hydrological cycle. Documentation of the other documented and suspected "hyperthermals" is, as yet, insufficient to assess whether they are similar in nature to the PETM. Here we present and discuss biomagnetostratigraphic data and geochemical records across two lower Eocene successions deposited on a continental margin of the western Tethys: the Farra and Possagno sections in the Venetian pre-Alps. We recognize four negative carbon isotope excursions within chron C24. Three of these shifts correlate to known or suspected hyperthermals: the PETM, the Eocene thermal maximum 2 (~53.6 Ma), and the informally named "X event" (~52.5 Ma). The fourth excursion lies within a reverse subchron and occurred between the latter two. In the Farra section, the X event is marked by a ~0.6% negative carbon isotope excursion and carbonate dissolution. Furthermore, the event exhibits responses among calcareous nannofossils, planktic foraminifera, and dinoflagellates that are similar to, though less intense than, those observed across the PETM. Sedimentological and quantitative micropaleontological data from the Farra section also suggest increased weathering and runoff as well as sea surface eutrophication during this event.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofPaleoceanographyen
dc.relation.ispartofseries/ 24 (2009)en
dc.subjectPaleoclimateen
dc.subjectHyperthermal eventsen
dc.subjectEarly Eoceneen
dc.subjectBio-magnetostratigraphyen
dc.subjectGeochemistryen
dc.titleAn early Eocene carbon cycle perturbation at ~52.5 Ma in the Southern Alps: Chronology and biotic responseen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberPA2209en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.10. Stratigraphyen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1029/2008PA001649en
dc.relation.referencesAgnini, C., E. Fornaciari, L. Giusberti, J. Backman, P. Grandesso, V. Luciani, D. Scardanzan, and D. Rio (2006a), In search of early Eocene hyperthermals: The Farra d’Alpago section (Southern Alps, Italy), in Climate and Biota of the Early Paleogene 2006, abstract volume, edited by F. Caballero et al., p. 2, Croman, Bilbao, Spain. Agnini, C., G. Muttoni, D. V. Kent, and D. Rio (2006b), Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability, Earth Planet. Sci. Lett., 241, 815–830, doi:10.1016/j.epsl.2005.11.005. Agnini, C., E. Fornaciari, D. Rio, F. Tateo, J. Backman, and L. Giusberti (2007a), Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian pre-Alps, Mar. Micropaleontol., 63, 19 – 38, doi:10.1016/j.marmicro.2006.10.002. Agnini, C., E. Fornaciari, I. Raffi, D. Rio, U. Ro¨hl, and T. Westerhold (2007b), Highresolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262: Implications for calcareous nannoplankton evolution, Mar. Micropaleontol., 64, 215 – 248, doi:10.1016/j.marmicro. 2007.05.003. Alegret, L., E. Molina, and E. Thomas (2003), Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences, Mar. Micropaleontol., 48, 251–279, doi:10.1016/S0377-8398(03)00022-7. Arenillas, I., E. Molina, and B. Schmitz (1999), Planktic foraminiferal and 13C isotopic changes across the Paleocene/Eocene boundary at Possagno (Italy), Int. J. Earth Sci., 88(2), 352–364, doi:10.1007/s005310050270. Aubry,M.-P. (1984), Handbook of Cenozoic Calcareous Nannoplankton, vol. 1, Ortholithae (Discoaster), 263 pp., Micropaleontology, Am. Mus. of Nat. Hist., New York. Aubry,M.-P. (1988), Handbook of Cenozoic Calcareous Nannoplankton, vol. 2, Ortholithae (Holococcoliths, Ceratoliths, Ortholiths and Other), 279 pp., Micropaleontology, Am. Mus. of Nat. Hist., New York. Aubry, M.-P. (1989), Handbook of Cenozoic Calcareous Nannoplankton, vol. 3, Ortholithae (Pentaliths and Others), Heliolithae (Fasciculiths, Sphenoliths and Others), 279 pp., Micropaleontology, Am. Mus. of Nat. Hist., New York. Aubry, M.-P. (1990), Handbook of Cenozoic Calcareous Nannoplankton, vol. 4, Heliolithae (Helicoliths, Cribriliths, Lopadoliths and Other), 381 pp., Micropaleontology, Am. Mus. of Nat. Hist., New York. Aubry, M.-P. (1998), Early Paleogene calcareous nannoplankton evolution: A tale of climatic amelioration, in Late Paleocene and Early Eocene Climatic and Biotic Evolution, edited by M.-P. Aubry et al., pp. 158–203, Columbia Univ. Press, New York. Aubry,M.-P. (1999), Handbook of Cenozoic Calcareous Nannoplankton, vol. 5, Heliolithae (Zygoliths and Rhabdoliths), 368 pp.,Micropaleontology, Am. Mus. of Nat. Hist., New York. Aubry, M.-P., K. Ouda, C. Dupuis, J. A. Van Couvering, and the members of the Working Group on the Paleocene/Eocene Boundary (2002), Proposal: Global standard stratotypesection and point (GSSP) at the Dababiya section (Egypt), internal report, 58 pp., Int. Subcomm. on Paleogene Stratigr., Trondheim, Norway. Backman, J., and N. J. Shackleton (1983), Quantitative biochronology of Pliocene and early Pleistocene calcareous nannoplankton from the Atlantic, Indian and Pacific Oceans, Mar. Micropaleontol., 8, 141 – 170, doi:10.1016/ 0377-8398(83)90009-9. Berggren, W. A., and P. N. Pearson (2005), A revised tropical to subtropical Paleogene planktonic foraminiferal zonation, J. Foraminiferal Res., 35, 279– 298, doi:10.2113/35.4.279. Berggren, W. A., D. V. Kent, C. C. Swisher III, and M.-P. Aubry (1995), A revised Cenozoic geochronology and chronostratigraphy, in Geochronology, Time Scales, and Global Stratigraphic Correlation, edited by W. A. Berggren et al., Spec. Publ. SEPM Soc. Sediment. Geol., vol. 54, pp. 129– 212. Bignot, G. (1998), Middle Eocene benthic foraminifers from holes 960A and 960C, central Atlantic Ocean, Proc. Ocean Drill. Program Initial Rep., 208, 433– 444. Boersma, A., N. J. Shackleton, M. Hall, and Q. Given (1979), Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleocene paleotemperatures and carbon isotope variations in the Atlantic Ocean, Initial Rep. Deep Sea Drill. Proj., 43, 695– 717. Boersma, A., I. P. Silva, and N. J. Shackleton (1987), Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography, Paleoceanography, 2, 287– 331, doi:10.1029/PA002i003p00287. Bolli, H. M., (1975), Monografia Micropaleontologica sul Paleocene e l’Eocene di Possagno, Provincia di Treviso, Italia, Schweiz. Palaeontol. Abh., 97, 222 pp. Bowen, G. J., et al. (2006), Eocene hyperthermal event offers insight into greenhouse warming, Eos Trans. AGU, 87(17), doi:10.1029/ 2006EO170002. Bowles, J. (2006), Data report: Revised magnetostratigraphy and magnetic mineralogy of sediments from Walvis Ridge, Leg 208, Proc. Ocean Drill. Program Sci. Results, 208, 1– 24. Bralower, T. J. (2002), Evidence of surface water oligotrophy during the Paleocene- Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise,Weddell Sea, Paleoceanography, 17(2), 1023, doi:10.1029/2001PA000662. Bralower, T. J., J. C. Zachos, E. Thomas, M. Parrow, C. K. Paull, D. C. Kelly, I. P. Silva, W. V. Sliter, and K. C. Lohmann (1995), Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot, Paleoceanography, 10, 841– 865, doi:10.1029/95PA01143. Bralower, T. J., et al. (2002), Proceedings of the Ocean Drilling Program Initial Reports, vol. 198, doi:10.2973/odp.proc.ir.198.2002, Ocean Drill. Program, College Station, Tex. Bujak, J. P., and H. Brinkhuis (1998), Global warming and dinocyst changes across the Paleocene/Eocene epoch boundary, in Late Paleocene– Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records, edited by M.-P. Aubry et al., pp. 277 – 295, Columbia Univ. Press, New York. Cande, S. C., and D. V. Kent (1995), Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100(B4), 6093 – 6096, doi:10.1029/94JB03098. Cati, A., D. Sartorio, and S. Venturini (1989), Carbonate platforms in the subsurface of the northern Adriatic area, Mem. Soc. Geol. Ital., 40, 295– 308. Coccioni,R., E. Angori, R. Catanzariti, L. Giusberti, E. Guasti, V. Luciani, A. Marsili, S. Monechi, M. Sprovieri, and F. Tateo (2006), The early Paleogene hyperthermal events (EPHES): New insights from the classical tethyan Contessa Road section (Gubbio, Italy), in Climate and Biota of the Early Paleogene 2006, abstract volume, edited by F. Caballero et al., p. 27, Croman, Bilbao, Spain. Cramer, B. S., J. D.Wright, D. V. Kent, and M.-P. Aubry (2003), Orbital climate forcing of d13C excursions in the late Paleocene– early Eocene (chrons C24n –C25n), Paleoceanography, 18(4), 1097, doi:10.1029/2003PA000909. Crouch, E.M.,C.Heilmann-Clausen,H.Brinkhuis, H. E. G. Morgans, K. M. Rogers, H. Egger, and B. Schmitz (2001), Global dinoflagellate event associated with the late Paleocene thermal maximum, Geology, 29(4), 315– 318, doi:10.1130/ 0091-7613(2001)029<0315:GDEAWT>2.0. CO;2. Crouch, E. M., G. R. Dickens, H. Brinkhuis, M.-P. Aubry, G. J. Hollis, K. M. Rogers, and H. Visscher (2003), The Apectodinium acme and terrestrial discharge during the Paleocene- Eocene thermal maximum: New palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand, Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 3 8 7 – 4 0 3 , d o i : 1 0 . 1 0 1 6 / S 0 0 3 1 - 0182(03)00334-1. Denman, K. L., et al. (2007), Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, edited by S. Solomon et al., pp. 499–588, Cambridge Univ. Press, New York. Dickens, G. R., J. R. O’Neil, D. K. Rea, and R. M. Owen (1995), Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, P a l e o c e a no g raphy, 10, 965 – 971, doi:10.1029/95PA02087. Dickens, G. R., M. M. Castillo, and J. C. G. Walker (1997), A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate, Geology, 25(3), 259– 262, doi:10.1130/ 0091-7613(1997)025<0259:ABOGIT>2.3. CO;2. Douglas, R. G., and S. M. Savin (1978), Oxygen isotopic evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera, Mar. Micropaleontol . , 3, 175 – 196, doi:10.1016/0377-8398(78)90004-X. Fensome, R. A., and G. L. Williams (2004), The Lentin and Williams Index of Fossil Dinoflagellates: 2004 Edition, Contrib. Ser., vol. 42, 909 pp., Am. Assoc. of Stratigr. Palynol., Pittsburgh, Pa. Fisher, R. (1953), Dispersion on a sphere, Proc. R. Soc. London, Ser. A, 217, 295 – 305, doi:10.1098/rspa.1953.0064. Gibbs, S. J., N. J. Shackleton, and J. R. Young (2004), Orbitally forced climate signals in mid-Pliocene nannofossil assemblages, Mar. Micropaleontol., 51, 39 – 56, doi:10.1016/ j.marmicro.2003.09.002. Gibbs, S. J., T. J. Bralower, P. R. Bown, J. C. Zachos, and L. M. Bybell (2006), Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene– Eocene thermal maximum: Implications for global productivity gradients, Geology, 34(4), 233 – 236, doi:10.1130/G22381.1. Giusberti, L., D. Rio, C. Agnini, J. Backman, E. Fornaciari, F. Tateo, and M. Oddone (2007), Mode and tempo of the Paleocene Eocene thermal maximum in an expanded section from the Venetian pre-Alps, Geol. Soc. Am. Bull., 119, 391–412, doi:10.1130/B25994.1. Hancock, H. J. L., and G. R. Dickens (2005), Carbonate dissolution episodes in Paleocene and Eocene sediment, Shatsky Rise,west-central Pacific [online], Proc. Ocean Drill. Program Sci. Results, 198, 24 pp. (Available at http:// www-odp.tamu.edu/publications/198_SR/116/ 116.htm) Haq, B. U., and G. P. Lohmann (1976), Early Cenozoic calcareous nannoplankton biogeography of theAtlanticOcean,Mar. Micropaleontol., 1, 119–194, doi:10.1016/0377-8398(76)90008-6. Hollis, C. J., G. R. Dickens, B. D. Field, C. M. Jones, and C. P. Strong (2005), The Paleocene- Eocene transition at Mead Stream, New Zealand: A southern Pacific record of early Cenozoic global change, Palaeogeogr. Palaeoclimatol. Palaeoecol., 215, 313 – 343, doi:10.1016/j.palaeo.2004.09.011. Istituto Nazionale di Geofisica e Vulcanologia (2007), Italian magnetic network and geomagnetic field maps of Italy at year 2005.0, Boll. Geod. Sci. Affini., 65, 1 – 47. Jansen, E., et al. (2007), Palaeoclimate, in Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, edited by S. Solomon et al., pp. 435– 498, Cambridge Univ. Press, New York. Kaminski, M. A., and F. M. Gradstein (2005), Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera, Spec. Publ., vol. 10, 548 pp., Grzybowski Found., Krakow, Poland. Kelly, D. C., T. J. Bralower, J. C. Zachos, I. Premoli Silva, and E. Thomas (1996), Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum, Geology, 24(5), 423 – 426, doi:10.1130/0091-7613(1996)024< 0423:RDOPFI>2.3.CO;2. Kennett, J. P., and L. D. Stott (1991), Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225 – 229, doi:10.1038/353225a0. Kirschvink, J. L. (1980), The least squares line and plane and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699– 718. Kleypas, J.A., R. A.Feely, V. J.Fabry,C.Langdon, C. L. Sabine, and L. L. Robbins (2006), Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research, report, 88 pp., NSF, Arlington, Va. Lirer, F. (2000), A new technique for retrieving calcareous microfossils from lithified lime deposits, Micropaleontology, 46, 365– 369. Lourens, L. J., A. Sluijs, D. Kroon, J. C. Zachos, E. Thomas, U. Ro¨hl, J. Bowles, and I. Raffi (2005), Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083– 1087, doi:10.1038/nature03814. Lu, G., and G. Keller (1996), Separating ecological assemblages using stable isotope signals: Late Paleocene to early Eocene planktic foraminifera, DSDP Site 577, J. Foraminiferal Res., 26, 103– 112. Luciani, V., L. Giusberti, C. Agnini, J. Backman, E. Fornaciari, andD. Rio (2007), The Paleocene- Eocene thermal maximum as recorded by Tethyan planktonic foraminifera in the Forada section (northern Italy), Mar. Micropaleontol., 64, 189 – 214, doi:10.1016/j.marmicro. 2007.05.001. Mantovani, F., M. Panizza, E. Semenza, and S. Piacente (1978), L’Alpago (Prealpi bellunesi): Geologia, geomorfologia, nivopluvimetria, Boll. Soc. Geol. Ital., 95, 1589–1656. Martini, E. (1971), Standard Tertiary and Quaternary calcareous nannoplankton zonation, in Proceedings of the 2nd Planktonic Conference, edited by A. Farinacci, vol. 2, pp. 739– 785, Tecnoscienza, Rome. Molina, E., C. Gonzalvo, M. A. Manchen˜o, S. Ortiz, B. Schmitz, E. Thomas, and K. von Salis (2006), Integrated stratigraphy and chronostratigraphy across the Ypresian-Lutetian transition in the Fortuna Section (Betic Cordillera, Spain), Newsl. Stratigr., 42(1), 1 – 19, doi:10.1127/0078-0421/2006/0042-0001. Monechi, S., E. Angori, and K. von Salis (2000), Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain), Bull. Soc. Geol. Fr., 171(4), 477– 489, doi:10.2113/171.4.477. Nicolo, M. J., G. R. Dickens, C. J. Hollis, and J. C. Zachos (2007), Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea, Geology, 35(8), 699 – 702, doi:10.1130/G23648A.1. Nomura, R., and H. Takata (2005), Data report: Paleocene/Eocene benthic foraminifers, ODP Leg 199 Sites 1215, 1220, and 1221, equatorial central Pacific Ocean [online], Proc. Ocean Drill. Program Sci. Results, 199, 34 pp. (Available at http://www-odp.tamu.edu/ publications/199_SR/223/223.htm) Ortiz, S., and E. Thomas (2006), Lower-middle Eocene benthic foraminifera from the Fortuna Section (Betic Cordillera, southeastern Spain), Micropaleontology, 52, 97– 150, doi:10.2113/ gsmicropal.52.2.97. Pagani,M., N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J. S. Sinninghe Damste, G. R. Dickens, and the IODP Expedition 302 Scientists (2006), Arctic hydrology during global warming at the Palaeocene/ Eocene thermal maximum, Nature, 442, 671– 675, doi:10.1038/nature05043. Pearson, P. N., R. K. Olsson, B. T. Huber, C. Hemleben, and W. A. Berggren (2006), Atlas of Eocene Planktonic Foraminiferas, Spec. Publ. Cushman Found. Foraminiferal Res., 41, 514 pp. Perch-Nielsen, K. (1985), Cenozoic calcareous nannofossils, in Plankton Stratigraphy, edited by H. M. Bolli et al., pp. 427– 554, Cambridge Univ. Press, New York. Pross, J., and H. Brinkhuis (2005), Organicwalled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene: A synopsis of concepts, Palaeontol. Z., 79, 53– 59. Quille´ve´re´, F., and R. D. Norris (2003), Ecological development of acarininids (planktonic foraminifera) and hydrographic evolution of Paleocene surface waters, in Causes and Consequences of Globally Warm Climates in the Early Paleogene, edited by S. L. Wing et al., Spec. Pap. Geol. Soc. Am., vol. 369, pp. 223– 238. Quille´ve´re´, F., R. D. Norris, I. Moussa, andW. A. Berggren (2001), Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera), Paleobiology, 27, 311 – 326, doi:10.1666/ 0094-8373(2001)027<0311:ROPABI>2.0. CO;2. Quille´ve´re´, F., R. D. Norris, D. Kroon, and P. A. Wilson (2008), Transient ocean warming and shift in carbon reservoir during the early Danian, Earth Planet. Sci. Lett., 265, 600– 615, doi:10.1016/j.epsl.2007.10.040. Raven, J., K. Caldeira, H. Elderfield, O. Hoegh- Guldberg, P. Liss, U. Riebesell, J. Shepherd, C. Turley, and A. Watson (2005), Ocean acidification due to increasing atmospheric carbon dioxide, Policy Doc. 12/05, 60 pp., R. Soc., London. Ravizza, G., R. N. Norris, J. Blusztajn, and M.-P. Aubry (2001), An osmium isotope excursion associated with the late Paleocene thermal maximum: Evidence of intensified chemical weathering, Paleoceanography, 16, 155–163, doi:10.1029/2000PA000541. Ro¨hl, U., J. C. Zachos, E. Thomas, D. C. Kelly, B. Donner, and T. Westerhold (2004), Multiple early Eocene thermal maximums, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract PP14A-02. Ro¨hl, U., T. Westerhold, S. Monechi, E. Thomas, J. C. Zachos, and B. Donner (2005), The third and final early Eocene thermal maximum: Characteristics, timing, and mechanisms of the ‘‘X’’ event, Geol. Soc. Am. Abstr. Programs, 37(7), 264. Schmitz, B., and V. Pujalte (2007), Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary, Geology, 35(3), 215–218, doi:10.1130/G23261A.1. Schmitz, B., F. Asaro, E. Molina, S. Monechi, K. von Salis, and R. P. Speijer (1997), Highresolution iridium, d13C, d180, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 133, 49 – 68, doi:10.1016/S0031- 0182(97)00024-2. Schmitz, B., V. Pujalte, and K. Nu´n˜ez-Betelu (2001), Climate and sea-level perturbations during the incipient Eocene thermal maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 299 – 320, doi:10.1016/S0031-0182(00)00167-X. Schouten, S., M. Woltering, W. I. C. Rijpstra, A. Sluijs, H. Brinkhuis, and J. S. Sinninghe Damste´ (2007), The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic, Earth Planet. Sci. Lett., 258, 581 – 592, doi:10.1016/j.epsl. 2007.04.024. Shackleton, N. J., R. M. Corfield, and M. A. Hall (1985), Stable isotope data and the ontogeny of Paleocene planktonic foraminifera, J. Foraminiferal Res., 15, 321– 337. Sluijs, A., H. Brinkhuis, C. E. Stickley, J.Warnaar, G. L. Williams, and M. Fuller (2003), Dinoflagellate cysts from the Eocene-Oligocene transition in the Southern Ocean: Results from ODP Leg 189 [online], Proc. Ocean Drill. Program Sci. Results, 189, 42 pp. (Available at http://www-odp.tamu.edu/publications/ 189_SR/VOLUME/CHAPTERS/104.PDF) Sluijs, A., J. Pross, and H. Brinkhuis (2005), From greenhouse to icehouse: Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene, Earth Sci. Rev., 68, 281 – 315, doi:10.1016/j.earscirev.2004. 06.001. Sluijs,A., G. J. Bowen, H. Brinkhuis, L. J. Lourens, and E. Thomas (2007a), The Palaeocene- Eocene thermal maximum super greenhouse: Biotic and geochemical signatures, age models and mechanisms of global change, in Deep Time Perspectives on Climate Change: Marrying the Signal From Computer Models and Biological Proxies, Micropaleontol. Soc. Spec. Publ., vol. 2, edited by M. Williams et al., pp. 323–349, Geol. Soc., London. Sluijs, A., H. Brinkhuis, S. Schouten, J. C. Zachos, C.M. John, S. Bohaty, J. S. Sinninghe Damste´, and E. M. Crouch (2007b), Environmental precursors to light carbon input at the Paleocene/Eocene boundary, Nature, 450, 1218–1221, doi:10.1038/nature06400. Sluijs, A., U. Ro¨hl, S. Schouten, H.-J. Brumsack, F. Sangiorgi, J. S. Sinninghe Damste´, and H. Brinkhuis (2008a), Arctic late Paleocene– early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program Expedition 302), Paleoceanography, 23, PA1S11, doi:10.1029/ 2007PA001495. Sluijs, A., et al. (2008b), Eustatic variations during the Paleocene-Eocene greenhouse world, Paleoceanography, 23, PA4216, doi:10.1029/ 2008PA001615. Speijer, R. P., and B. Schmitz (1998), A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina, Egypt, Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 79 – 101, doi:10.1016/S0031- 0182(97)00107-7. Stap, L., A. Sluijs, E. Thomas, and L. J. Lourens (2009), Patterns and magnitude of deep sea carbonate dissolution during Eocene thermal maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean, Paleoceanography, 24, PA1211, doi:10.1029/2008PA001655. Sztra´kos, K. (2005), Les foraminife`res du Pale´oce`ne et de l’E´ oce`ne basal du sillon nord-pyre´ne´en (Aquitaine, France), Rev. Micropaleontol., 48, 175–236, doi:10.1016/j.revmic.2005.06.001. Thierstein, H. R., K. R. Geitzenauer, B. Molfino, and N. J. Shackleton (1977), Global synchroneity of late Quaternary coccolith datum levels validation by oxygen isotopes, Geology, 5(7), 400–404, doi:10.1130/0091-7613(1977)5<400: GSOLQC>2.0.CO;2. Thomas, E. (1998), The biogeography of the late Paleocene benthic foraminiferal extinction, in Late Paleocene– Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records, edited by M.-P. Aubry, S. G. Lucas, and W. A. Berggren, pp. 214–243, Columbia Univ. Press, New York. Thomas, E. (2005), Benthic foraminifera and early Eocene hyperthermal events (SE Atlantic Ocean), Geol. Soc. Am. Abstr. Programs, 37(7), 413. Thomas, E. (2007), Cenozoic mass extinctions in the deep sea:What disturbs the largest habitat on Earth?, in Large Ecosystem Perturbations: Causes and Consequences, edited by S. Monechi, R. Coccioni, and M. R. Rampino, Spec. Pap. Geol. Soc. Am., vol. 424, pp. 1–23. Thomas, E., and N. J. Shackleton (1996), The Palaeocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in Correlation of the Early Paleogene in Northwest Europe, edited by R. W. O. B. Knox, R. M. Corfield, and R. E. Dunay, Geol. Soc. Spec. Publ., vol. 101, pp. 401– 441. Thomas, E., and J. C. Zachos (2000), Was the late Paleocene thermal maximum a unique event?, GFF, 122, 169– 170. Thomas, E., J. C. Zachos, and T. J. Bralower (2000), Deep sea environments on a warm Earth: Latest Paleocene – early Eocene, in Warm Climates in Earth History, edited by B. T. Huber, K. G. MacLeod, and S. L. Wing, pp. 132– 160, Cambridge Univ. Press, Cambridge, U. K. Thomas, E., U. Ro¨hl, S. Monechi, T.Westerhold, B. Balestra, and G. Morelli (2006), An early Eocene hyperthermal event at 52.5 Ma, in Climate and Biota of the Early Paleogene 2006, abstract volume, edited by F. Caballero et al., p. 136, Croman, Bilbao, Spain. Van Morkhoven, F. P. C. M., W. A. Berggren, and A. S. Edwards (1986), Cenozoic Cosmopolitan Deep-Water Benthic Foraminifera, Bull. Cent. Rech. Explor. Prod. Elf Aquitaine, vol. 11, 421 pp. Wei, W., and S. W. Wise Jr. (1990), Biogeographic gradients of middle Eocene-Oligocene calcareous nannoplankton in the South Atlantic Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 79, 29 – 61, doi:10.1016/0031- 0182(90)90104-F. Westerhold, T., U. Ro¨hl, J. Laskar, I. Raffi, J. Bowles, L. J. Lourens, and J. C. Zachos (2007), On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect, Paleoceanography, 22, PA2201, doi:10.1029/2006PA001322. Zachos, J. C., M. Pagani, L. C. Sloan, K. Billups, and E. Thomas (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686 – 693, doi:10.1126/ science.1059412. Zachos, J. C., et al. (2004), Proceedings of the Ocean Drilling Program Initial Reports, vol. 208, Early Cenozoic Extreme Climates: The Walvis Ridge Transect, doi:10.2973/odp. proc.ir.208.2004, Ocean Drill. Program, College Station, Tex. Zachos, J. C., et al. (2005), Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum, Science, 308, 1611 – 1615, doi:10.1126/science.1109004. Zachos, J.C., S. Schouten, S. Bohaty,T.Quattlebaum, A. Sluijs, H. Brinkhuis, S. J. Gibbs, and T. J. Bralower (2006), Extreme warming of midlatitude coastal ocean during the Paleocene- Eocene thermal maximum: Inferences from TEX86 and isotope data, Geology, 34(9), 737 – 740, doi:10.1130/G22522.1. Zijderveld, J. D. A. (1967), AC demagnetization of rocks: Analysis of results, in Methods in Palaeomagnetism, edited by S. K. Runcorn, K. M. Creer, and D. W. Collinson, pp. 254– 286, Elsevier, New York.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorAgnini, C.en
dc.contributor.authorMacrì, P.en
dc.contributor.authorBackman, J.en
dc.contributor.authorBrinkhuis, H.en
dc.contributor.authorFornaciari, E.en
dc.contributor.authorGiusberti, L.en
dc.contributor.authorLuciani, V.en
dc.contributor.authorRio, D.en
dc.contributor.authorSluijs, A.en
dc.contributor.authorSperanza, F.en
dc.contributor.departmentDipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geology and Geochemistry, Stockholm University, Stockholm, Swedenen
dc.contributor.departmentPalaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlandsen
dc.contributor.departmentDipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.departmentDipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.departmentDipartimento di Scienze della Terra, Polo Scientifico Tecnologico, Università di Ferrara, Ferrara, Italyen
dc.contributor.departmentDipartimento di Geoscienze, Università di Padova, Padua, Italyen
dc.contributor.departmentPalaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlandsen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Geoscienze, Università di Padova, Padua, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Geology and Geochemistry, S-10691 Stockholm, Sweden-
crisitem.author.deptPalaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands-
crisitem.author.deptDipartimento di Geoscienze, Università di Padova, Padua, Italy-
crisitem.author.deptDipartimento di Scienze della Terra, Polo Scientifico Tecnologico, Università di Ferrara, Ferrara, Italy-
crisitem.author.deptDepartment of Geosciences, Via Gradenigo 6, I-35100 Padova, Italy-
crisitem.author.deptPalaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-9749-6003-
crisitem.author.orcid0000-0003-2287-4019-
crisitem.author.orcid0000-0003-0253-6610-
crisitem.author.orcid0000-0001-7369-9535-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Agnini et al. 2009.pdfmain article933.65 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

78
checked on Feb 7, 2021

Page view(s) 10

337
checked on Mar 27, 2024

Download(s)

35
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric