Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5046
DC FieldValueLanguage
dc.contributor.authorallD'Alessandro, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallD'Anna, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLuzio, D.; CFTA, University of Palermoen
dc.contributor.authorallMangano, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2009-05-19T12:33:05Zen
dc.date.available2009-05-19T12:33:05Zen
dc.date.issued2009-05en
dc.identifier.urihttp://hdl.handle.net/2122/5046en
dc.description.abstractThe ocean bottom seismometer with hydrophone deployed on the flat top of the Marsili submarine volcano (790 m deep) by the Gibilmanna OBS Lab (CNT–INGV) from 12th to 21st July, 2006, recorded more than 1000 transient seismic signals. Nineteen of these signals were associated with tectonic earthquakes: 1 teleseismic, 8 regional (located by INGV) and 10 small local seismic events (non located earthquakes). The regional events were used to determine sensor orientation. By comparing the signals recorded with typical volcanic seismic activity, we were able to group all the other signals into three categories: 817 volcano–tectonic type B (VT-B) events, 159 occurrences of high frequency tremor (HFT) and 32 short duration events (SDE). Smallmagnitude VT-B swarms, having a frequency band of 2–6 Hz and a mean length of about 30 s, were almost all recorded during the first 7 days. During the last 2 days, the OBS/H mainly recorded HFT events with frequencies of over 40 Hz and of a few minutes in length. Signals that have similar features in frequency and time domain are generally associated with hydrothermal activity. During the last two days a signal was recorded that had a frequency content similar to that of VT-B events was recorded. It will be referred to as continuous volcanic tremor (CVT). The SDE signals, characterized by a quasi-monochromatic waveform and having an exponential decaying envelope, may have been generated by oscillations of resonant bodies excited by magmatic or hydrothermal activity. By applying polarization and parametric spectral analyses, we inferred that the VT-B were probably multi P-phase events having shallow sources that were situated in narrow azimuthal windows in relation to the positions of the OBS/H. The parametric spectral analysis of the SDE signals allowed us to determine their dominant complex frequencies with high accuracy; these frequencies are distributed in two distinct clusters on the complex plane.en
dc.language.isoEnglishen
dc.publisher.nameELSEVIERen
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries/183 (2009)en
dc.subjectMarsili Seamount OBS/H Transient volcano–seismic signals Continuous volcanic tremor Polarization analysis Spectral analysisen
dc.titleThe INGV's new OBS/H: Analysis of the signals recorded at the Marsili submarine volcanoen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber17-29en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.jvolgeores.2009.02.008en
dc.relation.referencesAlparone, S., Cammarata, L., Cannata, A., Gambino, S., Milluzzo, V., Gresta, S., 2008. Time–space variation of the 2004–2006 micro-seismicity at La Fossa (Vulcan, Aeolian Islands, Italy). EGU General Assembly, vol. 10. Argnani, A., 2000. The southern Tyrrhenian subduction system: recent evolution and neotectonic implications. Ann. Geophys. 43, 585–607. Bartosch, T., Seidl, D., 1999. Spectrogram analysis of selected tremor signals using shorttime Fourier transform and continuous wavelet transform. Ann. Geophys. 42, 497–506. Beccaluva, L., Rossi, P.L., Serri, G., 1982. Neogene to recent volcanism of the Southern Tyrrhenian–Sicilian area: implications for the geodynamic evolution of the Calabrian arc. Earth Evol. Sci. 3, 222–238. Calò, M., Dorbath, C., Luzio, D., Rotolo, S.G., D'Anna, G., 2009. Local earthquakes tomography in the southern Tyrrhenian region (Italy): geophysical and petrological inferences on subducting lithosphere. Subduction Zone Dynamics, Springer. doi:10.1007/978-3-540-87974-9. Chouet, B., 1985. Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J. Geophys. Res. 90, 1881–1893. Chouet, B., 1988. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J. Geophys. Res. 93, 4375–4400. Chouet, B., 1992. A seismic model for the source of long-period events and harmonic tremor. In: Gasparini, P., Scarpa, R., Aki, K. (Eds.), Volcanic Seismology. Springer- Verlag, New York, pp. 133–156. Chouet, B., 1996. New methods and future trends in seismological volcano monitoring. In: Scarpa, R., Tilling, R. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer-Verlag, Berlin New York, pp. 23–98. Chouet, B., 2003. Volcano seismology. Pure Appl. Geophys. 160, 739–788. Crosson, R.S., Bame, D.A., 1985. A spherical source model for low frequency volcanic earthquakes. J. Geophys. Res. 90, 10,237–10,247. D'Alessandro, A., D'Anna, G., Mangano, G., Amato, A., Favali, P., Luzio, D., 2006. Evidenze sperimentali dell'attività del vulcano sottomarino Marsili. 25° Conv. Naz del GNGTS, Roma, pp. 170–172. D'Alessandro, A., D'Anna, G., Luzio, D., Mangano, G., 2007. Analisi spettrale parametrica e di polarizzazione applicate agli eventi sismici registrati sul vulcano sottomarino Marsili. 26° Conv. Naz del GNGTS, Roma, pp. 191–193. D'Alessandro, A., D'Anna, G., Luzio, D., Mangano, G., 2008. Polarization and high resolution parametric spectral analysis applied to the seismic signals recorded on the Marsili submarine volcano. EGU General Assembly, vol. 10. D'Anna, G., Mangano, G., D'Alessandro, A., Amato, A., 2007. The new INGV broadband OBS/H: test results on submarine volcano Marsili and future developments. EGU General Assembly, Vienna, vol. 9. Diaz, J., Gallart, J., Gaspà, O., 2007. Atypical seismic signals at the Galicia Margin, North Atlantic Ocean, related to the resonance of subsurface fluid-filled cracks. Tectonophysics 433, 1–13. Faggioni, O., Pinna, E., Savelli, C., Schreider, A.A., 1995. Geomagnetism and age study of Tyrrhenian seamounts. Geophys. J. Int. 123, 915–930. Flinn, E.A., 1965. Signal analysis using rectilinearity and direction of particle motion. Porc. I.E.E.E. 53, 1874–1876. Fujita, E., Ida, Y., Oikawa, J., 1995. Eigen oscillation of a fluid sphere and source mechanism of harmonic volcanic tremor. J. Volcanol. Geotherm. Res. 69, 365–378. Julian, B.R., 1994. Volcanic tremor: nonlinear excitation by fluid flow. J. Geophys. Res 99, 859–877. Kastens, K., Mascle, J., Auroux, C.A., Bonatti, E., Broglia, C., Channell, J., Curzi, P., Emeis, K., Glacon, G., Hasegawa, S., Hieke,W., Mascle, G., McCoy, F., McKenzie, J., Mendelson, J., Mueller, C., Rehault, J., Robertson, A., Sartori, R., Sprovieri, R., Torii, M.,1988. ODP Leg 107 in the Tyrrhenian Sea: insight into passive margin and backarc basin evolution. Geol. Soc. Amer. Bull. 100 (1), 1140–1156. Konstantinos, I.K., Schlindwein, V., 2002. Nature, wavefield properties and source mechanism of volcanic tremor: a review. J. Volcanol. Geotherm. Res. 119, 161–187. Marani, M.P., Gamberi, F., 2004. Structural framework of the Tyrrhenian Sea unveiled by seafloor morphology. Mem. Descr. Carta Geol. d'It. , pp. 97–108. LXIV. Marani, M.P., Gamberi, F., Casoni, L., Carrara, G., Landuzzi, V., Musacchio, M., Penitenti, D., Rossi, L., Trua, T., 1999. New rock and hydrothermal samples from the southern Tyrrhenian Sea: the MAR-98 research cruise. G. Geol. 61, 3–24. Marani, M.P., Gamberi, F., Bonatti, E., 2004. In: Marani, M.P., Gamberi, F., Bonatti, E. (Eds.), From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin. APAT. McCreery, C.S., Duennebier, F.K., Sutton, G.H., 1993. Correlation of deep ocean noise (0.4–20 Hz) with wind, and the Holu spectrum a worldwide constant. J. Acoust. Soc. Am. 93, 2639–2648. McNutt, S.R., 1992. In: Nierenberg, W.A. (Ed.), Volcanic Tremor. Encyclopedia of Earth System Science, vol. 4. Academic Press, San Diego, pp. 417–425. McNutt, S.R., 1996. Seismic monitoring and eruption forecasting of volcanoes: a review of the state of the art and case histories. In: Scarpa, R., Tilling, R. (Eds.), Monitoring and Mitigation of Volcano Hazards. Springer-Verlag, Berlin New York, pp. 99–146. McNutt, S.R., 2000. In: Sigurdsson, H. (Ed.), Volcano Seismicity, Encyclopedia of Volcanoes. Academic Press, San Diego, pp. 1015–1034. McNutt, S.R., 2005. Volcanic seismology,. Annu. Ref. Earth Planet. Sci. 32, 461–491. Minakami, T., 1960. Fundamental research for predicting volcanic eruptions. Bull. Earthq. Res. Inst. Tokyo Univ. 38, 497–544. Mongelli, F., Zito, G., De Lorenzo, S., Doglioni, C., 2004. Geodynamic interpretation of the heat flow in the Tyrrhenian Sea. Mem. Descr. Carta Geol. d'It., pp. 71–82. LXIV. Montalto, A., 1993. Seismic events at Vulcano (Italy) during 1988–1992. J. Volcanol. Geotherm. Res. 60, 193–206. Montuori, C., Cimini, G.B., Favali, P., 2007. Teleseismic tomography of the southern Tyrrhenian subduction zone: new results from seafloor and land recordings. J. Geophys. Res. 112, B03311. Morrissey, M.M., Chouet, B.A., 1997. A numerical investigation of choked flow dynamics and its application to the triggering mechanism of long-period events at Redoubt Volcano, Alaska. J. Geophys. Res. 102, 7965–7983. Nakano, M., Kumagai, H., Kumazawa, M., Yamaoka, K., Chouet, B.A., 1998. The excitation and characteristic frequency of the long-period volcanic event: an approach based on an inhomogeneous autoregressive model of a linear dynamic system. J. Geophys. Res. 103, 10031–10046. Neuberg, J., Luckett, R., Baptie, B., Olsen, K., 2000. Models of tremor and low frequency earthquake swarms on Montserrat. J. Volcanol. Geotherm. Res. 101, 83–104. Nicolosi, L., Speranza, F., Chiappini, M., 2006. Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: evidence from magnetic anomaly analysis. Geology 34, 717–720. Ohiminato, T., 2006. Characteristics and source modelling of broadband seismic signals associated with the hydrothermal system at Satsuma–Iwojima volcano, Japan. J. Volcanol. Geotherm. Res. 158, 467–490. Okada, H., 2003. The microtremor survey method. Geophys. Monogr. Ser. Soc. Explor. Geophys. 12, 135. Panza, G.F., Pontevivo, A., Saraò, A., Aoudia, A., Peccerillo, A., 2004. Structure of the lithosphere–asthenosphere and volcanism in the Tyrrhenian Sea and surroundings. Mem. Descr. Carta Geol. d'It., pp. 29–57. LXIV. Panza, G.F., Peccerillo, A., Aoudia, A., Farina, B., 2007. Geophysical and petrological modelling of the structure and composition of the crust and uppermantle in complex geodynamic setting: the Tyrrhenian Sea and surroundings. Earth-Sci. Rev. 80, 1–46. Peterson, J., 1993. Observation and Modeling of Background Seismic Noise: U.S. Geol. Surv. Open-File Rept., Albuquerque, pp. 93–322. Pinnegar, C.R., 2006. Polarization analysis and polarization filtering of three-component signals with the time–frequency S transform. Geophys. J. Int. 165, 596–606. Piromallo, C., Morelli, A., 2003. P-wave tomography of the mantle under the Alpine– Mediterranean area. J. Geophys. Res. 108, 2065. Sartori, R., 1989. Evoluzione neogenico-recente del bacino tirrenico e i suoi rapporti con la geologia delle aree circostanti. Giorn. Geol. 51, 1–39. Sartori, R., 2003. The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere. Episodes 26, 217–221. Seidl, D., Hellweg, M., Rademacher, H., Gómez, D.M., Torres, R.A., 1999. The anatomy of a tornillo: puzzles from three-component measurements at Galeras volcano (Colombia). Ann. Geophys. 42, 355–364. Steinberg, G.S., Steinberg, A.S., 1975. On possible causes of volcanic tremor. J. Geophys. Res. 80, 1600–1604. Trua, T., Serri, G., Rossi, P.L., 2004. Coexistence of IAB-type and OIB-type magmas in the southern Tyrrhenian back-arc basin: evidence from recent seafloor sampling and geodynamic implications. Mem. Descr. Carta Geol. d'It., pp. 83–96. LXIV. Ukawa, M., Ohtake, M., 1987. A monochromatic earthquake suggestion deep-seated magmatic activity beneath the Izu–Oshima volcano, Japan. J.Geophys. Res. 92, 649–663. Wasserman, J., 2002. In: Bormann, P. (Ed.), Volcano Seismology, New Manual of Seismological Observatory Practice. Webb, S.C., 1998. Broadband seismology and noise under the ocean. Rev. Geophys. 36, 105–142. Welch, P.D., 1967. The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73. Wenz, G.M., 1962. Acoustic ambient noise in the ocean: spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956. Yokoyama, Y., Kumazawa, M., Imanishi, Y., Mikami, N., 1997. A new method of nonstationary time series analysis based on inhomogeneous AR equation, IEEE trans. Signal Process. 45, 2130–2136. Zito, G., Mongelli, F., de Lorenzo, S., Doglioni, C., 2003. Geodynamical interpretation of the heat flow in the Tyrrhenian Sea. Terra Nova 15, 425–432. Zobin, V.M., 2003. Introduction to Volcanic Seismology. Elsevier Publications, Amsterdam.en
dc.description.obiettivoSpecifico2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarinien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorD'Alessandro, A.en
dc.contributor.authorD'Anna, G.en
dc.contributor.authorLuzio, D.en
dc.contributor.authorMangano, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentCFTA, University of Palermoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità degli Studi di Palermo, CFTA, Palermo-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-0074-3125-
crisitem.author.orcid0000-0002-4642-3901-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
JVGR-D'Alessandro et al.pdfmain article4.57 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s) 10

446
checked on Mar 27, 2024

Download(s) 50

68
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric