Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/503
DC FieldValueLanguage
dc.contributor.authorallTort, A.; Laboratoire Magmas et Volcans, Universite´ Blaise Pascal et CNRS, OPGC, IRD, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.authorallFinizola, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-10-28T10:21:26Zen
dc.date.available2005-10-28T10:21:26Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/503en
dc.description.abstractThis survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.en
dc.description.sponsorship- Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).en
dc.format.extent539 bytesen
dc.format.extent756700 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries141(2005)en
dc.subjectcalderaen
dc.subjectelliptic Fourier functionsen
dc.subjectgeomorphologyen
dc.subjectself-potentialen
dc.subjectMisti volcanoen
dc.subjectPeruen
dc.titleThe buried caldera of Misti volcano, Peru, revealed by combining a self-potential survey with elliptic Fourier function analysis of topographyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber283– 297en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamicsen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processesen
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoringen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.09. Structural geologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.04. Hydrogeological dataen
dc.subject.INGV05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneousen
dc.subject.INGV05. General::05.08. Risk::05.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1016/j.jvolgeores.2004.11.005en
dc.relation.referencesAubert, M., Dana, I., 1994. Interpre´tation of the self-potential radial profiles in volcanology: possibilities of the SP method for the monitoring of the active volcanoes. Bull. Soc. Geol. Fr., 113–122. Aubert, M., Yéné Atangana, Q., 1996. Self-potential method in hydrogeological exploration of volcanic areas. Ground Water 34 (6), 1010– 1016. Boubekraoui, S., Courteaud, M., Aubert, M., Albouy, Y., Coudray, J., 1998. New insights into the hydrogeology of a basaltic shield volcano from a comparison between self-potential and electromagnetic data: Piton de la Fournaise, Indian ocean. J. Appl. Geophys. 40, 165–177. Bullard, F.M., 1962. Volcanoes of Southern Peru. Bull. Volcanol. 24, 443–453. Christophers, R.A., Waters, J.A., 1974. Fourier series as a quantitative descriptor of a miospore shape. J. Paleontol. 48 (4), 697–709. Corwin, R.F., Hoover, D.B., 1979. The self-potential method in geothermal exploration. Geophysics 44 (2), 226–245. Darnet, M., Marquis, G., Sailhac, P., 2003. Estimating aquifer hydraulic properties from the inversion of surface streaming potential (SP) anomalies. Geophys. Res. Lett. 30, 1679. de Silva, S.L., Francis, P.W., 1990. Active and potentially active volcanoes of southern Peru: observations using Landsat thematic mapper and space shuttle imagery. Bull. Volcanol. 52, 286–301. Finizola, A., Sortino, F., Le´nat, J.-F., Valenza, M., 2002. Fluid circulation at Stromboli volcano, (Aeolian Islands, Italy) from self-potential and soil gas surveys. J. Volcanol. Geotherm. Res. 116 (1–2), 1–18. Finizola, A., Sortino, F., Lénat, J.-F., Aubert, M., Ripepe, M., Valenza, M., 2003. The summit hydrothermal system of Stromboli: new insights from self-potential, temperature, CO2 and fumarolic fluids measurements, with structural and monitoring implications. Bull. Volcanol. 65, 486–504. Finizola, A., Lénat, J.-F., Macedo, O., Ramos, D., Thouret, J.C., Sortino, F., 2004. Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements. J. Volcanol. Geotherm. Res. 135, 343–360. Garcia-Zuniga, F., Parrot, J.F., 1998. Analyse tomomorphométrique d’un édifice volcanique re´cent: Misti (Pérou). C. R. Acad. Sci. Paris, t. Sér IIa 327, 457–462. Guichet, X., Zuddas, P., 2003. Effect of secondary minerals on electrokinetic phenomena during water–rock interaction. Geophys. Res. Lett. 30, 1714. Hashimoto, T., Tanaka, Y., 1995. A large self-potential anomaly on Unzen volcano, Shimabara peninsula, Kuyshu island, Japan. Geophys. Res. Lett. 22 (3), 191–194. Ishido, T., Mizutani, H., 1981. Experimental and theoretical basis of electrokinetic phenomena in rock–water systems and its applications to geophysics. J. Geophys. Res. 86, 1763–1775. Jackson, D.B., Kauahikaua, J., 1987. Regional self-potential anomalies at Kilauea volcano. bVolcanism in HawaiiQ chapter 40. USGS. Prof. Pap. 1350, 947–959. Jouniaux, L., Bernard, M.L., Zamora, M., Pozzi, J.P., 2000. Streaming potential in volcanic rocks from Mount Pelée. J. Geophys. Res. 105 (4), 8391–8401. Kuhl, F.F., Giardina, C.R., 1982. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18, 236–258. Lénat, J.F., 1987. Structure and dynamique interne d’un volcan basaltique intraplaque océanique : Le Piton de la Fournaise (ıˆle de la Réunion). Thèse de doctorat ès sciences, Univ. Blaise Pascal, Clermont-Ferrand (France). Lénat, J.F., Robineau, B., Durand, S., achélery, P., 1998. A selfpotential survey of the summit zone of Karthala volcano (Grande Comore). C. R. Acad. Sci. 327, 781–788. Lestrel, P. (Ed.), 1997. Fourier Descriptors and their Application in Biology. Cambridge University Press, Cambridge 466 pp. Lohmann, G.P., 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol. 15 (6), 659–672. Lorne, B., Perrier, F., Avouac, J.P., 1999a. Streaming potential measurements: 1. Properties of the electrical double layer from crushed rock samples. J. Geophys. Res. 104 (17),17857–17877. Lorne, B., Perrier, F., Avouac, J.P., 1999b. Streaming potential measurements: 2. Relationship between electrical and hydraulic flow patterns from rock samples during deformation. J. Geophys. Res. 104, 17879–17896. Malengreau, B., Lénat, J.F., Bonneville, A., 1994. Cartographie et surveillance temporelle des anomalies de Polarisation Spontanée (PS) sur le Piton de la Fournaise. Bull. Soc. Géol. Fr. 165 (3),221–232. Matsushima, N., Michiwaki, M., Okazaki, N., Ichikawa, N., Takagi,A., Nishida, Y., Mori, H.Y., 1990. Self-potential study in volcanic areas-Usu, Hokkaido Komaga-take and Me-akan. J. Fac. Sci., Hakkaido Univ., Ser. VII, Geophysics 8 (5), 465–477. Nishida, Y., Tomiya, H., 1987. Self-potential studies in volcanic areas—Usu volcano. J. Fac. Sci., Hokkaido Univ., Ser. VII,Geophysics 8 (2), 173–190. Pengra, D.B., Li, S.X., Wong, P.-Z., 1999. Determination of rock properties by low-frequency AC electrokinetics. J. Geophys. Res. 104, 29485–29508. Pride, S.R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev., B 50,15678–15696. Pride, S.R., Morgan, F.D., 1991. Electrokinetic dissipation induced by seismic waves. Geophysics 56, 914–925. Revil, A., Leroy, P., 2001. Hydroelectric coupling in a clayey material. Geophys. Res. Lett. 28, 1643–1646. Revil, A., Pezard, P.A., Glover, P.W.J., 1999a. Streaming potential in porous media: 1. Theory of the zeta potential. J. Geophys. Res. 104, 20021–20031. Revil, A., Schwaeger, H., Cathles, L.M., Manhardt, P.D., 1999b. Streaming potential in porous media: 2. Theory and application to geothermal systems. J. Geophys. Res. 104, 20033–20048. Revil, A., Hermitte, D., Voltz, M., Moussa, R., Lacas, J.-G.,Bourrié, G., Trolard, F., 2002. Self-potential signals associated with variations of the hydraulic head during an infiltration experiment. Geophys. Res. Lett. 29 (7), 1106. Revil, A., Saracco, G., Labazuy, P., 2003a. The volcano-electric effect. J. Geophys. Res. 108 (B5), 2251. Revil, A., Naudet, V., Nouzaret, J., Pessel, M., 2003b. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour. Res. 39 (5), 1114. Sasai, Y., Shimomura, T., Hamano, Y., Utada, H., Yoshino, T.,Koyama, S., Ishikawa, Y., Nakagawa, I., Yokoyama, Y., Ohno,M., Watanabe, H., Yukutake, T., Tanaka, Y., Yamamoto, T., Nakaya, K., Tsunomura, S., Muromatsu, F.,Murakami, R., 1990. Volcanomagnetic effect observed during the 1986 eruption of Izu-Oshima volcano. J. Geomagn. Geoelectr. 42, 291–318. Schaaf, A., Schmittbuhl, M., Allenbach, B., Hrehorowski, F., 1999. Four’Ellipses. Logiciel EOST, Strasbourg. Shi, G.R., 1993. Multivariate data analysis in palaeoecology and palaeobiogeography—a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 199– 234. Thouret, J.C., Finizola, A., Fornari, M., Legeley-Padovani, A.,Suni, J., Frechen, M., 2001. Geology of El Misti volcano near the city of Arequipa, Peru. Geol. Soc. Am. Bull. 113 (12),1593–1610. Tort, A., 2003a. Morphological plasticity of the outline and the internal structures of the shell of the recent Terebratella tenuis sp. nov. (Brachiopoda, Terebratulida). Zoomorphology 122, 47–54. Tort, A., 2003b. Elliptical Fourier functions as a morphological descriptor of the genus Stenosarina (Brachiopoda, Terebratulida, New Caledonia). Math. Geol. 35 (7), 873–885. Viguier, B., Tort, A., 2000. Morphologie craˆnienne et madibulaire des Indrinae. Apports des me´thodes Procrustes et des analyses de Fourier. C. R. Acad. Sci., Sci. Vie, Sér. III 323, 573–582. Zablocki, C.J., 1976. Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. Proceedings, 2nd U.N. Symposium of the Development and Use of Geothermal Resources, San Francisco, California, May 1975,vol. 2, pp. 1299–1309.en
dc.description.fulltextpartially_openen
dc.contributor.authorTort, A.en
dc.contributor.authorFinizola, A.en
dc.contributor.departmentLaboratoire Magmas et Volcans, Universite´ Blaise Pascal et CNRS, OPGC, IRD, 5 rue Kessler, 63038 Clermont-Ferrand, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLaboratoire Magmas et Volcans, Universite´ Blaise Pascal et CNRS, OPGC, IRD, 5 rue Kessler, 63038 Clermont-Ferrand, France-
crisitem.author.orcid0000-0002-5083-7349-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Tort A. JVGR 2005.pdfMain article738.96 kBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

15
checked on Feb 10, 2021

Page view(s) 50

215
checked on Apr 20, 2024

Download(s)

76
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric