Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5037
DC FieldValueLanguage
dc.contributor.authorallSettimi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSeverini, S.; Centro Interforze Studi per le Applicazioni Militari (CISAM), via della Bigattiera 10, 56010 San Pietro a Grado (Pi), Italyen
dc.contributor.authorallHoenders, B. J.; Research Group Theory of Condensed Matter in the Institute for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groeningen, Nijenborg 4, NL 9747 AG Groeningen, Netherlandsen
dc.date.accessioned2009-05-06T14:06:27Zen
dc.date.available2009-05-06T14:06:27Zen
dc.date.issued2009-03-31en
dc.identifier.urihttp://hdl.handle.net/2122/5037en
dc.description.abstractWe use the “quasi-normal-modes” (QNM) approach for discussing the transmission properties of double-side opened optical cavities: in particular, this approach is specified for one-dimensional (1D) “photonic bandgap” (PBG) structures. Moreover, we conjecture that the density of the modes is a dynamical variable that has the flexibility of varying with respect to the boundary conditions as well as the initial conditions; in fact, the electromagnetic (e.m.) field generated by two monochromatic counterpropagating pump waves leads to interference effects inside a quarter-wave symmetric 1D-PBG structure. Finally, here, for the first time to the best of our knowledge, a large number of theoretical assumptions on QNM metrics for an open cavity, never discussed in literature, are proved, and a simple and direct method to calculate the QNM norm for a 1D-PBG structure is reported.en
dc.language.isoEnglishen
dc.publisher.nameHenry M. Van Driel, University of Torontoen
dc.relation.ispartofJ. Opt. Soc. Am. Ben
dc.relation.ispartofseries4/26 (2009)en
dc.relation.isversionofhttp://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-26-4-876en
dc.subjectElectromagnetic opticsen
dc.subjectResonanceen
dc.subjectTransmissionen
dc.subjectPhotonic crystalsen
dc.titleQuasi-normal-modes description of transmission properties for photonic bandgap structuresen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber876-891en
dc.identifier.URLhttp://lanl.arxiv.org/find/all/1/all:+settimi/0/1/0/all/0/1en
dc.subject.INGV01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagationen
dc.identifier.doi10.1364/JOSAB.26.000876en
dc.relation.references1. K. Sakoda, Optical Properties of Photonic Crystals (Springer Verlag, 2001). 2. J. Maddox, “Photonic band-gaps bite the dust”, Nature 348, 481–481 (1990). 3. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486–2489 (1987). 4. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge”, Phys. Rev. Lett. 53, 2169–2172 (1984). 5. P. Yeh, Optical Waves in Layered Media (Wiley, 1988). 6. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions”, Phys. Rev. E 60, 4891–4898 (1999). 7. J. E. Sipe, L. Poladian, and C. Martijn de Sterke, “Propagation through nonuniform grating structures”, J. Opt. Soc. Am. A 4, 1307–1320 (1994). 8. E. S. C. Ching, P. T. Leung, and K. Young, “Optical processes in microcavities—the role of quasi-normal modes”, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996), pp. 1–75. 9. P. T. Leung, S. Y. Liu, and K.Young, “Completeness and orthogonality of quasinormal modes in leaky optical cavities”, Phys. Rev. A 49, 3057–3067 (1994). 10. P. T. Leung, S. S. Tong, and K. Young, “Two-component eigenfunction expansion for open systems described by the wave equation I: completeness of expansion”, J. Phys. A 30, 2139–2151 (1997). 11. P. T. Leung, S. S. Tong, and K. Young, “Two-component eigenfunction expansion for open systems described by the wave equation II: linear space structure”, J. Phys. A 30, 2153–2162 (1997). 12. E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, S. S. Tong, and K. Young, “Quasinormal-mode expansion for waves in open systems”, Rev. Mod. Phys. 70, 1545–1554 (1998). 13. P. T. Leung, W. M. Suen, C. P. Sun, and K. Young, “Waves in open systems via a biorthogonal basis”, Phys. Rev. E 57, 6101–6104 (1998). 14. K. C. Ho, P. T. Leung, A. Maassen van den Brink, and K. Young, “Second quantization of open systems using quasinormal modes”, Phys. Rev. E 58, 2965–2978 (1998). 15. A. Maassen van den Brink and K. Young, “Jordan blocks and generalized bi-orthogonal bases: realizations in open wave systems”, J. Phys. A 34, 2607–2624 (2001). 16. B. J. Hoenders, “On the decomposition of the electromagnetic field into its natural modes,” in Proceedings of the 4th International Conference on Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, 1978), pp. 221–233. 17. B. J. Hoenders and H. A. Ferwerda, “On a new proposal concerning the calculation of the derivatives of a function subject to errors”, Optik (Jena) 40, 14–17 (1974). 18. B. J. Hoenders, “Completeness of a set of modes connected with the electromagnetic field of a homogeneous sphere embedded in an infinite medium”, J. Math. Phys. 11, 1815–1832 (1978). 19. B. J. Hoenders, “On the completeness of the natural modes for quantum mechanical potential scattering”, J. Math. Phys. 20, 329–335 (1979). 20. M. Bertolotti, “Linear one-dimensional resonant cavities”, in Microresonators as Building Blocks for VLSI Photonics of AIP Conference Proceedings, F. Michelotti, A. Driessen, and M. Bertolotti, eds. (AIP, 2004), Vol. 709, pp. 19–47. 21. B. J. Hoenders and M. Bertolotti, “The (quasi)normal natural mode description of the scattering process by dispersive photonic crystals”, Proc. SPIE 6182, 61821F–6182G (2006). 22. M. Maksimovic, M. Hammer, and E. van Groesen, “Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes”, Opt. Lett. 281, 1401–1411 (2008). 23. S. Severini, A. Settimi, N. Mattiucci, C. Sibilia, M. Centini, G. D’Aguanno, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Quasi normal modes description of waves in 1D photonic crystals,” Proc. SPIE 5036, 392–401 (2003). 24. A. Settimi, S. Severini, N. Mattiucci, C. Sibilia, M. Centini, G. D’Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, and C. M. Bowden, “Quasinormal-mode description of waves in one-dimensional photonic crystals”, Phys. Rev. E 68, 026614 (2003). 25. S. Severini, A. Settimi, C. Sibilia, M. Bertolotti, A. Napoli, and A. Messina, “Quasi-normal frequencies in open cavities: an application to photonic crystals”, Acta Phys. Hung. B 23, 135–142 (2005). 26. S. Severini, A. Settimi, C. Sibilia, M. Bertolotti, A. Napoli, and A. Messina, “Quantum counterpropagation in open optical cavities via the quasi-normal-mode approach”, Laser Phys. 16, 911–920 (2006). 27. M. Born and E. Wolf, Principles of Optics (Macmillan,1964). 28. G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable—Theory and Technique (McGraw-Hill, 1983). 29. E. N. Economou, Green’s Functions in Quantum Physics (Springer-Verlag, 1979). 30. A. Bachelot and A. Motet-Bachelot, “Les résonances d’un trou noir de Schwarzschild”, Ann. Inst. Henri Poincaré, Sect. A 59, 3–68 (1993). 31. D. W. L. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential”, Am. J. Phys. 61, 1118–1124 (1993). 32. M. G. Rozman, P. Reineken, and R. Tehver, “Scattering by locally periodic one-dimensional potentials”, Phys. Lett. A 187, 127–131 (1994). 33. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures”, Phys. Rev. E 53, 4107–4121 (1996). 34. J. P. Dowling, “Parity, time-reversal and group delay for inhomogeneous dielectric slabs: Application to pulse propagation in finite, one-dimensional, photonic bandgap structures”, in Proceedings of IEEE-Optoelctronics (IEEE, 1998), Vol. 145, pp. 420–435. 35. A. Sopahaluwakan, “Characterization and simulation of localized states in periodic structures”, Ph.D. dissertation (University of Twente, 2006).en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorSettimi, A.en
dc.contributor.authorSeverini, S.en
dc.contributor.authorHoenders, B. J.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCentro Interforze Studi per le Applicazioni Militari (CISAM), via della Bigattiera 10, 56010 San Pietro a Grado (Pi), Italyen
dc.contributor.departmentResearch Group Theory of Condensed Matter in the Institute for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groeningen, Nijenborg 4, NL 9747 AG Groeningen, Netherlandsen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentro Interforze Studi Applicazioni Militari (CISAM), Via della Bigattiera lato monte 10, 56122 San Piero a Grado, Pisa, Italia-
crisitem.author.deptResearch Group Theory of Condensed Matter in the Institute for Theoretical Physics and Zernike Institute for Advanced Materials, University of Groeningen, Nijenborg 4, NL 9747 AG Groeningen, Netherlands-
crisitem.author.orcid0000-0002-9487-2242-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
QNM description of transmission properties for PBG structures.pdfreserved697.63 kBAdobe PDF
QNM description of transmission properties for PBG structures.pdfMain article1.84 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

20
checked on Feb 10, 2021

Page view(s) 20

457
checked on Apr 17, 2024

Download(s) 50

213
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric