Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5018
DC FieldValueLanguage
dc.contributor.authorallCaratori Tontini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCocchi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCarmisciano, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2009-04-15T06:23:52Zen
dc.date.available2009-04-15T06:23:52Zen
dc.date.issued2009-02-13en
dc.identifier.urihttp://hdl.handle.net/2122/5018en
dc.description.abstractWe show a set of forward model equations in the Fourier domain for calculating the 3-D gravity and magnetic anomalies of a given 3-D distribution of density or magnetization. One property of the potential field equations is that they are given by convolution products, providing a very simple analytic expression in the Fourier domain. Under this assumption, the domain of the density or magnetization parameters is connected by a biunivoc relationship with the data space, and potential field anomalies can be seen as filtered versions of the corresponding density or magnetization distributions. A very fine spatial discretization can be obtained by using a large number of points within a unique 3-D grid, where both the source distributions and field data are defined. The main advantage of this formulation is that it dramatically reduces execution times, providing a very fast forward model tool useful for modeling anomalies at different altitudes. We use this method to evaluate an average magnetization of 8 A/m for the Palinuro Seamount in the Tyrrhenian Sea (southern Italy), thus performing a joint interpretation of morphological and newly acquired magnetic data.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 114 (2009)en
dc.subjectpotential field modelingen
dc.subjectFourier transformen
dc.subjectPalinuro Seamounten
dc.titleRapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB02103en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomaliesen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1029/2008JB005907en
dc.relation.referencesBarnett, C. T. (1976), Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body, Geophysics, 41, 1353– 1364. Beccaluva, L., G. Gabbianelli, F. Lucchini, L. Rossi, and C. Savelli (1985), Petrology and K/Ar ages of volcanics dredged from the Aeolian seamounts: Implications for geodynamic evolution of the southern Tyrrhenian basin, Earth Planet. Sci. Lett., 74, 187– 208. Bhattacharyya, B. K. (1964), Magnetic anomalies due to prism-shaped bodies with arbitrary polarization, Geophysics, 29, 517– 531. Bhattacharyya, B. K. (1966), Continuous spectrum of the total-magnetic field anomaly due to a rectangular prismatic body, Geophysics, 31, 97– 121. Bhattacharyya, B. K. (1967), Some general properties of potential fields in space and frequency domain, Geoexploration, 5, 127–143. Blakely, R. J. (1995), Potential Theory in Gravity and Magnetic Applications, 441 pp., Cambridge Univ. Press, Cambridge, UK. Bott, M. H. P. (1963), Two methods applicable to computer for evaluating magnetic anomalies due to finite three-dimensional bodies, Geophys. Prosp., 11, 292– 299. Cady, J. W. (1980), Calculation of gravity and magnetic anomalies of finitelength right rectangular prism, Geophysics, 45, 1507– 1512. Churchill, R. J., J. W. Brown, and R. F. Verhey (1974), Complex Variables and Applications, 332 pp., McGraw-Hill, London. Colantoni, P., F. Lucchini, L. Rossi, R. Sartori, and C. Savelli (1981), The Palinuro volcano and magmatism of the southeastern Tyrrhenian Sea (Mediterranean), Mar. Geol., 39, M1–M12. Cooley, J. W., and J. W. Tukey (1965), An algorithm for the machine calculation of complex Fourier series, Math. Comput., 19, 297– 301. Del Ben, A., C. Barnaba, and A. Taboga (2008), Strike-slip systems as the main tectonic features in the Plio-Quaternary kinematics of the Calabrian Arc, Mar. Geophys. Res., 29, 1– 12. Furness, P. (1994), A physical approach to computing magnetic fields, Geophys. Prosp., 42, 405– 416. Gradshteyn, I. S., and I. M. Rydzik (1980), Table of Integrals, Series and Products, 1204 pp., Academic Press, London. Hansen, R. O., and X. Wang (1988), Simplified frequency-domain expressions for potential fields of arbitrary three-dimensional bodies, Geophysics, 53, 365– 374. Holstein, H. (2002a), Gravimagnetic similarity in anomaly formulas for uniform polyhedra, Geophysics, 67, 1126–1133. Holstein, H. (2002b), Invariance in gravimagnetic formulas for uniform polyhedra, Geophysics, 67, 1134–1137. Malinverno, A., and W. B. F. Ryan (1986), Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere, Tectonics, 5, 227– 245. Marani, M., and F. Gamberi (2004), Distribution and nature of submarine volcanic landforms in the Tyrrhenian Sea: The arc vs. the backarc, in From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin, Mem. Descr. C. Geol. It., vol. LXIV, edited by M. Marani et al., APAT, Rome. Marani, M., and T. Trua (2002), Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano, J. Geophys. Res., 107(B9), 2188, doi:10.1029/2001JB000285. Marani, M., F. Gamberi, and E. Bonatti (Eds.) (2004), From Seafloor to Deep Mantle: Architecture of the Tyrrhenian Backarc Basin, Mem. Descr. C. Geol. It., vol. LXIV, 194 pp., APAT, Rome. Maus, S., and V. P. Dimri (1994), Scaling properties of potential fields due to scaling sources, Geophys. Res. Lett., 21, 891– 894. Nabighian, M. N., V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, J. W. Peirce, J. D. Phillips, and M. E. Ruder (2005a), The historical development of the magnetic method in exploration, Geophysics, 70, 33–61. Nabighian, M. N., M. E. Ander, V. J. S. Grauch, R. O. Hansen, T. R. LaFehr, Y. Li, W. C. Pearson, J. W. Peirce, J. D. Phillips, and M. E. Ruder (2005b), The historical development of the gravity method in exploration, Geophysics, 70, 63–89. Nagy, D. (1966), The gravitational attraction of a right rectangular prism, Geophysics, 31, 362–371. Okabe, M. (1979), Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies, Geophysics, 44, 730–741. Parker, R. L. (1972), The rapid calculation of potential anomalies, Geophys. J. R. Astron. Soc., 31, 447– 455. Pedersen, L. B. (1985), The gravity and magnetic fields from ellipsoidal bodies in the wavenumber domain, Geophys. Prosp., 33, 263– 281. Peng, M., Y. C. Li, and M. G. Sideris (1995), First results on the computation of terrain corrections by the 3D-FFT method, Manuscr. Geod., 20(6), 475–488. Plouff, D. (1976), Gravity and magnetic fields of polygonal prisms and applications to magnetic terrain corrections, Geophysics, 41, 727–741. Poha´nka, V. (1988), Optimum expression for computation of the gravity of a homogeneous polyhedral body, Geophys. Prosp., 36, 733– 751. Rasmussen, R., and L. B. Pedersen (1979), End corrections in potential field modeling, Geophys. Prosp., 27, 749– 760. Schouten, J. A., and K. McCamy (1972), Filtering marine magnetic anomalies, J. Geophys. Res., 77, 7089– 7099. Shuey, R. T., and A. S. Pasquale (1973), End corrections in magnetic profile interpretation, Geophysics, 38, 507–512. Singh, B., and D. Guptasarma (2001), New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra, Geophysics, 66, 521– 526. Singh, S. K., and F. J. Sabina (1978), Magnetic anomaly due to a vertical right cylinder with arbitrary polarization, Geophysics, 43, 173–178. Talwani, M. (1965), Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape, Geophysics, 30, 797– 817. Talwani, M., and M. Ewing (1960), Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape, Geophysics, 25, 203– 225. Talwani, M., J. L. Worzel, and M. Landisman (1959), Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone, J. Geophys. Res., 64, 49– 59. Turcotte, D. L. (1997), Fractals and Chaos in Geology and Geophysics, 397 pp., Cambridge Univ. Press, Cambridge, UK.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCaratori Tontini, F.en
dc.contributor.authorCocchi, L.en
dc.contributor.authorCarmisciano, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-7835-1116-
crisitem.author.orcid0000-0001-7357-2147-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Caratori_Tontini_JGR_2009.pdfmain article1.11 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

48
checked on Feb 10, 2021

Page view(s) 20

271
checked on Apr 24, 2024

Download(s) 50

59
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric