Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5012
DC FieldValueLanguage
dc.contributor.authorallCocchi, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCaratori Tontini, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCarmisciano, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMarani, M.; ISMAR-CNR, Sezione di Geologia Maina, via P. Gobetti 101 Bolognaen
dc.date.accessioned2009-04-08T10:30:33Zen
dc.date.available2009-04-08T10:30:33Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/5012en
dc.description.abstractWe show the magnetic model of the Selli-Vavilov region. The Selli Line is known as the northwestern edge of the southern Tyrrhenian basin. The tectonic evolution of the Tyrrhenian basin is dominated by a Tortonian - Quaternary extension through the eastward movement of the Apennine subduction system. This migration has generated a diffuse stretching of the continental crust with the emplacement of new oceanic material. This latter occurred in several localized zones where the eastward retreating of the Ionian subduction system produced a strong depletion of the crust with formation of basins and correlated spreading. Nowadays the presence of oceanic crust is confirmed through direct drilling investigation but a complete mapping of the oceanic crustal distribution is still lacking. The Selli-Vavilov region shows a differentiated crustal setting where seamount structures, the oceanic basement portions and continental crust blocks are superimposed. To this aim, a 2D inversion of the magnetic data of this region was conducted to define buried structures. The magnetic susceptibility pattern was computed by solving the least squares problem of the misfit between the predicted and real data for separated wavebands. This method produced two 2D models of the high and low frequency fields of the Selli-Vavilov region. The two apparent susceptibility maps provide different information for distinct ranges of depth. The results of the inversions were also combined with seismic data of the Selli region highlighting the position of the highly-magnetized buried bodies. The results confirm a role for the Selli Line as a deep crustal boundary dividing the Sardinian passive domain from the easternmost active region where different oceanic structures are located. The Selli Line has worked as a detachment fault system which has moved eastward. Finally, the Selli-Vavilov region may be interpreted as a tectonic result due to a passive asymmetrical rift occurred between the Tortonian and Pliocene.en
dc.language.isoEnglishen
dc.publisher.nameSpringeren
dc.relation.ispartofMarine Geophysical Researchesen
dc.relation.ispartofseries/29 (2008)en
dc.subjectGeomagnetismen
dc.subjectTectonicsen
dc.subjectGeodynamicsen
dc.subjectInversionen
dc.subjectOceanic crusten
dc.subjectVolcanic structureen
dc.titleTortonian-Pleistocenic oceanic features in the Southern Tyrrhenian Sea: magnetic inverse model of the Selli-Vavilov regionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber251-266en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomaliesen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.identifier.doi10.1007/s11001-009-9061-5en
dc.relation.referencesBailey DK (1983). The chemical and thermal evolution of rifts, Tectonophysics, 94: 585-597. Beccaluva L, Bonatti E, Dupuy C, et al (1990). Geochemistry and mineralogy of volcanic rocks from the ODP sites 650, 651, 655 and 654 in the Tyrrhenian Sea, Proc. ODP Scientific Results, 107, 49-74, doi: 10.2973/odp.proc.sr.107.140.1990. Beccaluva L, Di Girolamo P, Serri G (1991). Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy, Lithos, 26: 191-221. Bhattacharyya BK (1964). Magnetic anomalies due to prism-shaped bodies with arbitrary polariza­tion, Geophysics, 29: 517-531. Bigi G, Cosentino D, Parotto M, Sartori R, Scandone P (1990) Structural Model of Italy, Scale 1:500000, sheet 3-6, CNR, P. Geodinamica, Selca Florence. Biju-Duval B, Dercourt J, Le Pichon X (1977). From the Tethys Ocean to the Mediterranean Sea: A plate tectonic model of the western Alpine system, In: Structural history of the Mediterranean Basin, Biju-Duval, B. & Montadent,L. Eds, Technip, Paris, 143-164. Cande S C, Kent D V (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, Journal of Geophysical Research, 100: 6093-6095. Caratori Tontini F, Stefanelli P, Giori I, Faggioni O, Carmisciano C (2004). The revised aeromagnetic anomaly map of Italy, Annals of Geophysics, 47 (5): 1547-1555. Caratori Tontini F, Graziano F, Cocchi L, Carmisciano C, Stefanelli P (2007) Determining the optimal Bouguer density for a gravity data set: implications for the isostatic setting of the Mediterranean Sea, Geophysical Journal International, 169: 380-388. Caratori Tontini F, Cocchi L, Carmisciano C (2008) Potential field inversion for a layer with uneven thickness: The Tyrrhenian Sea density model, Physics of the Earth and Planetary Interior, 166:105-111. Carmignani L, Kligfield R (1990) Crustal extension in the northern Apennines: the transition from com­pression to extension in the Alpi Apuane complex, Tectonics, 9: 1275-1305. Carminati E, Wortel MJR, Meijer R, Sabadini R (1998) The two-stage opening of the wester-central Mediterranean basins: a forward modeling test to a new evolutionary model, Earth and Plan. Sci. Let., 160: 667-679. Consiglio Nazionale delle Ricerche (1992) Structural model of Italy and Gravity map, Progetto finalizzato Geodinamica, 114(3), 9 sheets. Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat flow distribution, In: Vai GB, Martini IP (Eds) Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basin, 65-76, Kluwer Academic, Dordrecht. Doglioni C (1991) A proposal of kinematic modeling for W-dipping subduction -possible application to the Tyrrhenian-Apennine system, Terra Nova, 3: 423-434. Doglioni C, Mongelli F, Pieri, P (1994) The Puglia uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere, Tectonics, 13: 1309-1321. Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo C, Piromallo C (1999) Orogens and slab vs. their direction of subduction, Earth Science review,45: 167-208. Doglioni C, Innocenti F, Morellato C, Procaccianti D, Scrocca D (2004) On the Tyrrhenian Sea opening, Mem. Descr. Carta. Geol. It, 64: 147-164. Fabbri A, Curzi P (1979) The Messinian of the Tyrrhenian Sea: seismic evidence and dynamic implication, Giornale di geologia,43: 215-248. Facenna C, Mattei M, Funiciello D, Jolivet L (1997) Styles of back-arc extension in the central Mediter­ranean, Terra Nova, 9: 126-130. Faggioni O, Pinna E, Savelli C, Schreider AA (1995) Geomagnetism and age study of Tyrrhenian seamounts, Geophysical Journal International, 123: 915-930. Fedi M, Quarta T, De Santis A (1997) Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble, Geophysics, 62: 1143-1150. Finetti I, Morelli C (1973) Geophysical exploration of the Mediterranean Sea, Boll. Geof. Teor. Appl, 15: 263-340. Finetti I, Del Ben A (1986) Geophysical study of Tyrrhenian opening, Boll. Geof. Teor. Appl, 28: 75-156. Gueguen F, Doglioni C, Fernandez M (1998). On the post-25 Ma geodynamic evolution of the western Mediterranean, Tectonophysics, 298: 259-269. Jolivet et al., 1998. Mid crustal shear zones in post-orogenic extension: Example from the northern Tyrrhenian Sea, J. Geophys. Res, 103: 12123-12160. Hansen PC, O’Leary DP (1993) The use of L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Computation., 14: 1487-1503. Hinze WJ, Von Frese RRB, Ravat DN (1991) Mean magnetic contrasts between oceans and conti­nents,Tectonophysics, 192: 117-127. Kastens K, et al (1988) ODP Leg 107 in the Tyrrhenian Sea: Insights into passive margins and back-arc basin evolution, Geol. Soc. Am. Bull., 100: 1140-1156. Lavecchia G (1988) The Tyrrhenian-Apennines system: Structural setting and seismotectogene­sis, Tectonophysics, 147: 263-296. Lister GS, Etheridge MA, Symonds PA (1986) Detachment faulting and the evolution of passive conti­nental margins, Geology, 14: 246-250. Lawson CL, Hanson RJ (1974) Solving Least Squares Problems, Prentice Hall, Englewood Cliffs Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of lithosphere, Tectonics, 5: 227-245. Marani MP, Gamberi F (2004) Structural framework of the Tyrrhenian Sea unveiled by seafloor morphol­ogy, Mem. Descr. Carta Geol. It., 64: 97-108. Marani MP, Trua T (2002) Thermal constriction and slab tearing at the origin of a superinflated spreading ridge: Marsili volcano (Southern Tyrrhenian Sea), J. Geophy. Res., 107: doi: 10.1029/2001JB000285. Mascle J, Rehault JP (1990) A revised seismic stratigraphy of the Tyrrhenian Sea: implications for the basin evolution, Proc. ODP, Sci. Results, 107, College Station TX (Ocean Drilling Program), 617-636. Maus S, Dimri VP (1994) Scaling properties of potential fields due to scaling sources, Geoph. Res. Lett., 21: 891-894. Mongelli F, Loddo M, Calcagnile G (1975) Some observation on the Apennine gravity system, Earth Planet. Sci. Lett., 24: 385-393. Nicolich R (2001) Deep seismic transect, In: Vai GB, Martini IP (Eds) Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basin, 47-52, Kluwer Academic, Dordrecht. Nicolosi I, Speranza F, Chiappini M (2006) Ultrafast oceanic spreading of the Marsili Basin, southern Tyrrhenian Sea: Evidence from magnetic anomaly analysis, Geology, 34 (9): 717-720. Patacca E, Sartori R, Scandone P (1990) Tyrrhenian Basin and Apenninic arcs: kinematic relations since Late Tortonian times, Mem. Soc. Geol. It., 45: 425-451. Robin C, Colantoni P, Gennesseaux M, Rehault JP (1987). Vavilov seamount: a mid alkaline Quaternary volcano in the Tyrrhenian basin, Mar. Geol., 78: 125-136. Royden L (1988) Flexural Behaviour of the Continental Lithosphere in Italy Constraints imposed by gravity and deflection data, J. Geoph. Res., 93: 7747-7766. Rosenbaum G, Lister GS (2004) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics, 23: doi: 10.1029/2003TC001518. Sartori R, Torelli L, Zitellini N, Carrara G, Magaldi M, Mussoni P (2004) Crustal features along a W-E Tyrrhenian transect from Sardinia to Campanian margins (Central Mediterranean), Tectonophysics, 383: 171-192 Savelli C (1988) Late Oligocene to Recent episodes of magmatism in and around the Tyrrhenian Sea: Impli­cations for the processes of the opening in a young inter-arc basin of intra-orogenic (Mediterranean) type, Tectonophysics, 146: 163-181. Savelli C, Schreider AA (1991) The opening processes in the deep Tyrrhenian basin of the Marsili and Vavilov, as deduced from magnetic and chronological evidence of their igneous crust, Tectonophysics, 190: 119-131. Schreider AA (1993) Chronology of the oceanic linear magnetic anomalies, Phys. Earth, 4: 3-19. Scrocca D, Doglioni C, Innocenti F, Manetti P, Mazzotti A, Bertelli L, Burbi L, D’Offizi S (2003) CROP Atlas: seismic reflection profiles of the Italian crust, Mem. Descr. Carta Geol. It., 62: 75-156. Selli R, Fabbri A (1971) Tyrrhenian: A Pliocene deep sea, Rendiconti della classe di Scienze fisiche matematiche e naturali, 5 (5): 580-592. Selli R, Lucchini F, Rossi P, Savelli C, Del Monte M (1977) Dati geologici, petrochimici, e radiometrici sui vulcani centro-tirrenici, Giornale di geologia, 2 (42): 221-246. Serri G (1990) Neogene-Quaternary magmatism of the Tyrrhenian region: characterization of the magma sources and geodynamic implications, Mem. Soc. Geol. It, 41: 219-242. Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of de­laminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of Central Italy, Tectonophysics, 223: 117-147. Serri G, Innocenti F, Manetti P (2001) Magmatism from Mesozoic to Present: petrogenesis, time-space distribution and geodynamic implications, In: Vai GB, Martini IP (Eds) Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basin, 77-104, Kluwer Academic, Dordrecht. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data, Geophysics, 35: 293-302. Speranza F, Villa IM, Sagnotti L, Florindo F, Cosentino D, Cipollari P, Mattei M (2002) Age of the Corsica-Sardinia rotation and Liguro-Provençal Basin spreading: New paleo­magnetic and Ar/Ar evidence, Tectonophysics, 347: 231-251. Tikhonov AN, Arsenin VY (1977) Solutions of Ill-Posed Problems, Winston & Sons, Washington D.C. Van Dijk JP, Scheepers PJJ (1995) Neotectonic rotation in the Calabrian Arc; implications for a Pliocene-Recent geodynamic scenario for the Central Mediterranean, Earth Sci. Rev., 39: 207-246. Wernike B (1981) Low-angle normal faults in the Basin and Range province: Nappe tectonics in a extending orogen, Nature, 291: 645-648.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei sistemi vulcanicien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCocchi, L.en
dc.contributor.authorCaratori Tontini, F.en
dc.contributor.authorCarmisciano, C.en
dc.contributor.authorMarani, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentISMAR-CNR, Sezione di Geologia Maina, via P. Gobetti 101 Bolognaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto di Geologia Marina, CNR, Bologna, Italia-
crisitem.author.orcid0000-0001-7835-1116-
crisitem.author.orcid0000-0001-7357-2147-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Cocchi_etal_2008_mager.pdfmain article1.05 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

4
checked on Feb 10, 2021

Page view(s) 20

285
checked on Mar 27, 2024

Download(s)

35
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric