Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/500
DC FieldValueLanguage
dc.contributor.authorallPfeiffer, T.; University of Aarhus, Denmark, Department of Earth Sciencesen
dc.contributor.authorallCosta, A.; Università di Bologna, Dip. di Scienze della Terra e Geologico-Ambientalien
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2005-10-27T07:14:55Zen
dc.date.available2005-10-27T07:14:55Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/500en
dc.description.abstractA simple semianalytical model to simulate ash dispersion and deposition produced by sustained Plinian and sub-Plinian eruption columns based on the 2D advection-dispersion equation was applied. The eruption column acts as a vertical line source with a given mass distribution and neglects the complex dynamics within the eruption column. Thus, the use of the model is limited to areas far from the vent where the dynamics of the eruption column play a minor role. Vertical wind and diffusion components are considered negligible with respect to the horizontal ones. The dispersion and deposition of particles in the model is only governed by gravitational settling, horizontal eddy diffusion, and wind advection.The model accounts for different types and size classes of a user-defined number of particle classes and changing settling velocity with altitude. In as much as wind profiles are considered constant on the entire domain, the model validity is limited to medium-range distances (about 30–200 km away from the source). The model was used to reconstruct the tephra fall deposit from the documented Plinian eruption of Mt. Vesuvius, Italy, in 79 A.D. In this case, the model was able to broadly reproduce the characteristic medium-range tephra deposit. The results support the validity of the model, which has the advantage of being simple and fast to compute. It has the potential to serve as a simple tool for predicting the distribution of ash fall of hypothetical or real eruptions of a given magnitude and a given wind profile. Using a statistical set of frequent wind profiles, it also was used to construct air fall hazard maps of the most likely affected areas around active volcanoes where a large eruption is expected to occur.en
dc.format.extent497 bytesen
dc.format.extent2527525 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of volcanology and geothermal researchen
dc.relation.ispartofseries140en
dc.subjectAsh fallen
dc.subjectSettling velocityen
dc.subjectComputer modelen
dc.subjectVesuvius 79 A.D.en
dc.titleA model for the numerical simulation of tephra fall depositsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber273-294en
dc.identifier.URLwww.elsevier.com/locate/jvolgeoresen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1016/j.jvolgeores.2004.09.001en
dc.relation.referencesArastoopour, H., Wang, C.H., Weil, S.A., 1982. Particle–particle interaction in a dilute gas–solid system. Chem. Eng. Sci. 37 (9), 1379– 1386. Armienti, P., Macedonio, G., Pareschi, M.T., 1988. A numerical model for simulation of tephra transport and deposition: application to May 18, 1980, Mount St.Helens eruption. J. Geophys. Res. 93, 6463– 6476. Aschenbach, E., 1972. Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54, 565– 575. Bonadonna, C., Ernst, G.G.J., Sparks, R.S.J., 1998. Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J. Volcanol. Geotherm. Res. 81 (3–4), 173–187. Bonadonna, C., Macedonio, G., Sparks, R.S.J., 2002. Numerical model of tephra fallout with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. Mem. Geol. Soc. Lond. 21, 517– 537. Carey, S., Sparks, R.S.J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 48, 109– 125. Carey, S., Sigurdsson, H., 1987. The eruption of Vesuvius in A.D. 79: II. Variation in column height and discharge rate. Geol. Soc. Am. Bull. 99 (2), 303– 314. Cornell, W., Carey, S., Sigurdsson, H., 1983. Computer simulation and transport of the Campanian Y-5 ash. J. Volcanol. Geotherm. Res. 17, 89– 109. Kunii, D., Levenspiel, O., 1969. Fluidization Engineering. J. Wiley and Sons. Landau, L., Lifchitz, E., 1971. Me`canique des Fluides. Mir. Macedonio, G., Pareschi, M.T., Santacroce, R., 1988. A numerical simulation of the Plinian fall phase of 79 A.D. eruption of Vesuvius. J. Geophys. Res. 93, 14817– 14827. Macedonio, G., Costa, A., Longo, A., 2004. Hazmap—computer model of volcanic ash fall-out from erupting sustained columns and hazard assessment. Comput. Geosci. submitted for publ. Mironer, A., 1979. Engineering Fluid Mechanics. McGraw-Hill, New York, 592 pp. Morton, B.R., Taylor, G., Turner, S., 1956. Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. 234, 1 – 23. Pfeiffer, T., 2003. Two catastrophic volcanic eruptions in the Mediterranean: Santorini 1645 BC and Vesuvius 79 AD. PhD Thesis, Department of Earth Sciences, University of Aarhus, Denmark. Rose, W.I., Wundermann, R.L., Hoffmann, M.F., Gale, L., 1983. Atmosperic hazards of volcanic activity from a volcanologist’s point of view: Fuego and Mount St. Helens. J. Volcanol. Geotherm. Res. 17, 133– 157. Sigurdsson, H., Cashdollar, S., Sparks, R.S.J., 1982. The eruption of Vesuvius in A.D. 79: reconstruction from historical and volcanological evidence. Am. J. Archaeol. 86, 39–51. Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., 1985. The eruption of Vesuvius in A.D. 79. Natl. Geogr. Res. 3, 332– 397. Smithsonian Institution, 1951. Smithsonian Meteorological Tables, 6th ed. Washington, DC. Sparks, R.S.J.,1986. The dimensions and dynamics of volcanic eruption columns. Bull. Volcanol. 48 (1), 3 – 15. Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: Shimozuru, D., Yokoyama, I. (Eds.), Volcanism: Physics and Tectonics. Arc, Tokyo, pp. 95– 113. Walker, G.P.L., Wilson, L., Bowell, E.L.G., 1971. Explosive volcanic eruptions: I. Rate of fall of pyroclasts. Geophys. J. R. Astron. Soc. 22, 377– 383. Wilson, L., Huang, T.C., 1979. The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet. Sci. Lett. 44, 311 – 324.en
dc.description.fulltextpartially_openen
dc.contributor.authorPfeiffer, T.en
dc.contributor.authorCosta, A.en
dc.contributor.authorMacedonio, G.en
dc.contributor.departmentUniversity of Aarhus, Denmark, Department of Earth Sciencesen
dc.contributor.departmentUniversità di Bologna, Dip. di Scienze della Terra e Geologico-Ambientalien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversity of Aarhus, Denmark, Department of Earth Sciences-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Pfeiffer.pdf2.47 MBAdobe PDF
journal volcanology geothermal research.htmredirect - journal of volcanology and geothermal research497 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

107
checked on Feb 10, 2021

Page view(s) 20

269
checked on Apr 17, 2024

Download(s)

82
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric